发现宇宙暴涨直接证据-诺奖级成果
来自:pluiepoco(周音)
组长
2014-03-19 16:25:19
原标题:科学家首次发现宇宙暴涨直接证据 被称诺奖级成果 仰望浩渺的星空,人们总是不由要问:宇宙从何而来?美国科学家17日宣布,他们发现了原初引力波穿越婴儿宇宙留下的印记,这是宇宙刚刚诞生时急剧膨胀的首个直接证据。 美国航空航天局(NASA)称,这是迄今为止,证明宇宙膨胀理论最有力的证据。这一突破性的重大发现有望帮助弄清宇宙诞生之谜,被认为是诺贝尔奖级别的重大成果。 测到比“预想强烈得多”的信号 科学界目前普遍认为,宇宙诞生于距今约140亿年前的一次“大爆炸”。在大爆炸之后不到1秒钟的原初时刻,宇宙曾在极短时间内经历了速度快到无法想象的急剧膨胀,这一过程称为“暴涨”。 为验证暴涨理论,美国哈佛-史密森天体物理学中心等机构研究人员利用位于南极的BICEP2望远镜,对宇宙大爆炸的“余烬”——微波背景辐射进行观测。宇宙微波背景辐射(CMB)是宇宙在大爆炸之后38万年时散落在宇宙空间中的微弱电磁波,当时辐射首次得以自由穿过空间,而引力波则是在宇宙大爆炸之后一瞬间便出现,并被叠加在CMB的信号之中。微波背景辐射如同埋藏在宇宙深处的“化石”,记录着早期宇宙的许多信息,最早在1964年由两位美国科学家通过一台射电望远镜发现,自那之后便被称作是“大爆炸的回声”。 微波背景辐射中的微波因为被原子和电子散射而具有偏振性,新研究寻找的是一种叫做B模式的特殊偏振模式,其特点是会形成旋涡,是宇宙极早期的一种时空波动——原初引力波留下的独特印记,其他形式的扰动,都产生不了这种B模式偏振。 南极是地球上观测微波背景辐射的最佳地点之一。研究人员说,他们意外发现了比“预想的强烈得多”的B模式偏振信号。研究共同作者、明尼苏达大学的克莱姆·普赖克说:“这就好像要在草堆里找一根针,结果我们找到了一根铁撬棍。” 随后经过三年多分析,排除了其他可能的来源,确认它就是暴涨期间原初引力波穿越宇宙导致的。这意味着宇宙暴涨理论获得迄今最有力的证据,并将帮助人们更详细地了解暴涨的过程。 填补广义相对论最后一块拼图 爱因斯坦于1916年提出的广义相对论预言了原初引力波的存在。虽然过去十多年中,有多个研究项目在探测原初引力波,包括普朗克卫星、POLARBEAR地面实验,及位于南极的另一个“南极望远镜”实验等,其中普朗克卫星是欧洲航天局于2009年5月发射、造价约7亿欧元的全天域微波背景辐射观测望远镜,但科学界此前一直没有找到这种波存在的证据。新发现不仅填补了广义相对论实验验证中最后一块缺失的拼图,让现代物理学的根基更加坚实,也会鼓舞引力波研究人员的士气,促进有关国家进一步加大投入。 哈佛-史密森天体物理学中心的理论物理学家阿维·洛布说:“这项工作为一些最基本的问题提供了新见解:我们为什么会存在?宇宙是怎么诞生的?这些结果不仅是宇宙暴涨的确凿证据,它们也告诉我们暴涨是什么时候发生的,暴涨的威力又有多大。” 一些物理学家认为,这是一项诺贝尔奖级别的发现。美国亚利桑那州立大学理论物理学家劳伦斯·克劳斯在接受新华社记者采访时说,虽然这项成果还需要得到进一步验证,但“无论怎样,都令人激动”。如被证实,将“可以跻身过去25年最重要的宇宙学发现之列”,有望获得诺贝尔奖。 NASA表示,这一发现不仅有助于证实宇宙瞬间膨胀,还能够为理论学家提供关于分离时间和空间的力量的首个证据。 观察 原初引力波发现的四大意义 首先,这一发现填补了广义相对论实验验证的最后一块缺失的拼图。 爱因斯坦1916年发表的广义相对论预言了宇宙诞生之初产生的一种时空波动——原初引力波——的存在。过去近百年中,广义相对论的其他预言如光线的弯曲、水星的近日点进动以及引力红移效应都已获证实,唯有原初引力波因信号极其微弱,技术上很难测量,而一直徘徊在天文学家“视线”之外。剑桥大学博士、加拿大不列颠哥伦比亚大学的“CITA国家研究员”马寅哲认为,原初引力波的发现是支持广义相对论的又一有力证据,相对论所预言的所有实验现象全部被验证,实验与理论符合得都很好。 其次,这一发现打开了观测宇宙的一扇新窗户。 在天文学几百年来的发展过程中,人们观测宇宙的主要手段是观测光,也就是说几乎所有天文实验都是在收集光子。而根据标准宇宙大爆炸理论,大爆炸之后约40万年,光子、电子及其他粒子混在一起,宇宙处于晦暗的迷雾状态,光无法穿透。而引力波则不同,它诞生在宇宙大爆炸之初并以光速传播。从事引力波研究多年的美国亚利桑那州立大学理论物理学家劳伦斯·克劳斯认为,引力波被测量到,意味着人们可以通过引力波而一直追溯到大爆炸之后仅仅10的负35方秒的极早时期,同时引力波也可以作为另一种观测宇宙的手段。引力波天文学这门新学科的大门也由此打开。 第三,这一发现有助于真正理解宇宙大爆炸原初时刻的物理过程。 根据上世纪80年代逐渐发展起来的暴涨理论,140亿年前,在大爆炸之后不到10的负35方秒的时间里,宇宙以指数速度急剧膨胀,即所谓“暴涨过程”。原初引力波忠实记录了暴涨时期的物理过程。马寅哲告诉记者,现在关于大爆炸原初时刻的理论模型有数百个,但“到底哪个对,还是都不对,在今天之前是不清楚的。但如果(美国科学家的)结果是真的,那么很多理论模型会被排除”。 第四,这一发现意味着对宇宙微波背景辐射的测量将会进入下一个重要里程碑。 宇宙微波背景辐射是宇宙大爆炸的“余烬”,是一种弥漫在整个宇宙空间中的微弱电磁波信号。过去几十年中,人们测量微波背景辐射,其实主要测量的是温度场的信息,却一直没有测量到引力波的独特印记——B模式偏振。目前,全球多个小组在探测引力波,新发现无疑将极大鼓舞他们的士气,并促进有关国家进一步加大科研经费和人力资源投入。 马寅哲表示:“此项工作若获证实,当之无愧是诺贝尔奖级的工作。而且在此之后,关于引力波的诺贝尔奖可能还会再出现。宇宙‘暴涨’理论的提出者也可能获奖。” 名词解释 引力波 原初引力波是爱因斯坦于1916年发表的广义相对论中提出的,它是宇宙诞生之初产生的一种时空波动,随着宇宙的演化而被削弱。科学家说,原初引力波如同创世纪大爆炸的“余响”,它的发现可以让科学家第一次“看到”宇宙是怎样形成的,从而揭开宇宙诞生之谜。 然而,广义相对论提出近百年来,源于它的其他重要预言都被一一被证实,而引力波却始终未被直接探测到,问题就在于其信号极其微弱——波动的幅度远小于一颗原子的100万倍——技术上很难测量,因此也有人将之戏称为“世纪悬案”、“宇宙中最大的徒劳无益之事”。 尽管直到今天,神秘的引力波才向人们一展真面目,但在此之前人们已经间接观测到它的存在。1974年,美国物理学家乔瑟夫·泰勒和拉塞尔·赫尔斯首次发现一个双星系统。在这个系统中,两颗中子星亲密环绕并变得越来越接近,这意味着两颗星正在损失能量。由于其轨道变化与相对论的预测完全吻合,两名科学家认为能量正在以引力波的形式释放,这一发现让他们获得了1993年的诺贝尔奖。 值得指出的是,此次所观测到的是所谓“原初引力波”,这是宇宙诞生时刻发出的引力波痕迹,它隐藏着有关宇宙如何形成的关键信息。 BICEP2望远镜建在南极的阿蒙森-斯科特考察站。这里是南极冰盖之上,海拔超过2800米,因此这里的大气很稀薄。同样,这里的空气也很干燥,这些都是很有利的条件,因为水汽会阻挡微波的传播。另外,南极洲几乎无人居住,因此来自手机通讯、电视机以及其他电子设备的干扰相对要小得多。 广义相对论 1916年,德国物理学家爱因斯坦发现了一种数学的方法来解释引力的本质,他将其称之为“广义相对论”,它代表了现代物理学中引力理论研究的最高水平。这一理论依靠一系列的坐标系统,将时间与空间结合在一起进行描述,即所谓的“时空”概念。 物质和能量会造成时空的扰动,就像是重物压在床垫上会凹陷一样。正是这种时空的扰动或扭曲产生了引力,而引力波正是时空中的涟漪。 广义相对论的预言至今为止已经通过了所有观测和实验的验证——虽说广义相对论并非当今描述引力的唯一理论,它却是能够与实验数据相符合的最简洁的理论。 广义相对论并非完全是难以理解的数学。它拥有深远的实际应用意义,比如它告诉我们引力如何对时间造成影响,而这对于现代的卫星导航定位就十分关键。 宇宙 大爆炸与暴涨 宇宙大爆炸理论是现代宇宙学中最有影响的一种学说,其主要观点是认为宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系在不断地膨胀,使物质密度从密到稀地演化,如同一次规模巨大的爆炸。 宇宙大爆炸理论最初是由比利时牧师兼物理学家乔治·勒梅特1932年提出的。他将其称为是“没有昨天的一天”,因为那是时间和空间的开端。 1946年美国物理学家伽莫夫正式提出大爆炸理论,他认为我们所观测到的宇宙始于140亿年以前的一次大爆炸。爆炸之初,物质只能以中子、质子、电子、光子和中微子等基本粒子形态存在。宇宙爆炸之后的不断膨胀,导致温度和密度很快下降。随着温度降低、冷却,逐步形成原子、原子核、分子,并复合成为通常的气体。气体逐渐凝聚成星云,星云进一步形成各种各样的恒星和星系,最终形成我们现在所看到的宇宙。 但大爆炸理论并非与所有天文观测结果相吻合。宇宙中物质的分布太过均匀,以至于难以用原先认为的大爆炸理论进行解释。于是在上世纪70年代,宇宙学家们提出宇宙在大爆炸之后的短暂时期曾经经历一段急剧快速膨胀的阶段,这就是暴涨,它被认为发生在宇宙大爆炸之后的一瞬间,时空的暴涨造就了宇宙的开端——在不到10的负35方秒的时间里,宇宙以指数方式迅速膨胀。只有暴涨才能将原初引力波放大到足以被检测到的水平。因此如果能够探测到原初引力波,那么这就意味着暴涨必定确实发生过。 --2014年03月19日08:20 来源:北京日报
-
pluiepoco (周音) 组长 楼主 2014-03-20 18:13:54
英文报道:
TEXT
Proof of Inflationary Universe to be Announced Today UPDATE MARCH 17: All the rumors were true. The story below was written yesterday, before today's announcement that the fingerprints of inflation have been found in the cosmic microwave background. Read the full account of today's announcement here.
Cosmic searches at the South Pole. The BICEP-2 Telescope is inside the up-facing dish-shaped shield at right. The larger white dish is the South Pole Telescope (SPT), and the building is the Dark Sector Laboratory. Both experiments observe in the millimeter-submillimeter part of the spectrum, mapping polarization patterns in the cosmic background radiation. BICEP-2 Project MARCH 16: Rumors have been racing through the physics and cosmology communities for the last few days that long-sought, Nobel Prize-worthy evidence for cosmic inflation driving the Big Bang will be announced on Monday, March 17th. A press conference for a "major discovery" regarding this topic is scheduled for noon EDT (16:00 UT) at the Harvard-Smithsonian Center for Astrophysics, just up the street from Sky & Telescope. We'll be there.
Word of what may be announced first broke into wide circulation late Friday night, when The Guardian newspaper in the U.K. published an article online, Gravitational waves: have US scientists heard echoes of the big bang? Here are excerpts:
There is intense speculation among cosmologists that a US team is on the verge of confirming they have detected "primordial gravitational waves" — an echo of the big bang in which the universe came into existence 14bn years ago … that would change the face of cosmology and particle physics.
"If they do announce primordial gravitational waves on Monday, I will take a huge amount of convincing," said Hiranya Peiris, a cosmologist from University College London. "But if they do have a robust detection … Jesus, wow! I'll be taking next week off."
The discovery of gravitational waves from the big bang would offer scientists their first glimpse of how the universe was born.
The signal is rumoured to have been found by a specialised telescope called Bicep (Background Imaging of Cosmic Extragalactic Polarization) at the south pole. It scans the sky at microwave frequencies, where it picks up the fossil energy from the big bang.
For decades, cosmologists have thought that the signature of primordial gravitational waves could be imprinted on this radiation. "It's been called the Holy Grail of cosmology," says Peiris, "It would be a real major, major, major discovery.… The primordial gravitational waves have long been thought to be the smoking gun of inflation. It's as close to a proof of that theory as you are going to get." This is because cosmologists believe only inflation can amplify the primordial gravitational waves into a detectable signal…
"This is the real big tick-box that we have been waiting for. It will tell us something incredibly fundamental about what was happening when the universe was 10–34 seconds old," said Prof Andrew Jaffe, a cosmologist from Imperial College, London, who works on another telescope involved in the search called Polarbear…
In last October's Sky & Telescope we published an article on the race among several projects to find inflationary B-modes, and how this subtle signal would be formed in the first 10–34 second of the Big Bang. Here it is for background: Back to the Big Bang by Bruce Liebermann (2 MB pdf file). Here is our list of B-mode search projects, with links to all of them.
And here's an explanation of how gravitational waves create the polarization patterns that researchers are trying to detect:
Gravitational waves created polarization patterns in the cosmic microwave background (CMB) by stretching and squeezing space — and therefore the plasma soup of primordial photons and electrons — as the waves passed through. (A) Before a wave hits it from behind, a cross-section of space with an electron in the middle looks normal. But when the wave hits, the cross-section stretches and squeezes one way, then another, in an oscillating pattern (B). Instead of a uniform soup, the electron “sees” around it a universe a bit warmer in the squeezed direction and a bit cooler in the stretched direction (C). Originally, a photon’s wave wiggles in all planes perpendicular to the photon’s motion (D and E, incoming crosses). When photons scatter off the electron, they become polarized, wiggling in only one plane (outgoing lines). The resulting pattern (F) is a sum of the cooler and warmer photons’ polarizations. But because photons from warmer regions have more energy, their pattern “wins out,” meaning the overall polarization is parallel to the warm regions (G). S&T: Leah Tiscione A summary of the topic and what to look for in an announcement comes from Philip Gibbs in his viXra log blog: Primordial Gravitational Waves? Excerpts:
If true this would be a very big deal indeed because it could be a direct experimental hook into the physics of inflation and even quantum gravity. These are of course the least well understood and most exciting unchartered waters of fundamental physics…
E- and B-mode polarization patterns look different. E-modes have no “handedness” — if you draw a line down the pattern’s center and reflect the pattern, nothing changes. B-modes look like spirals and do have "handedness": they change when mirror-imaged. Although gravitational waves can create both types, and E-modes can be altered into B-modes by later scattering, primordial B-modes can only be made by primordial gravitational waves. S&T: Leah TiscioneMicrowave polarisation can be broken down into two modes using a Helmholtz decomposition which splits a vector field into a sum of two parts: The E-mode whose vector curl is zero, and the B-mode whose divergence is zero. The E-mode in the CMB was first observed in 2002 by the DASI interferometer, but it is not particularly interesting. E-mode polarisation is generated by scattering from atoms before the radiation decoupled from matter but long after the period of inflation.
Last summer the South Pole Telescope (SPT) found B-modes in the CMB for the first time, but these were known to be due to gravitational lensing of the radiation around massive galactic clusters. These can twist the E-mode polarisation to form B-modes so they are only slightly more interesting than the E-modes themselves. Really these lensing B-modes are not much better than a background that needs to be subtracted to see the more interesting B-modes that may be the signature of primordial gravitational waves…
As an initial result, we are interested in [the strength of the inflationary B-modes], which is given by a parameter known simply as r. The latest rumors say that a value for r has been measured by the BICEP2 observatory in Antarctica … Versions of the rumor say that the answer is r = 0.2. This is somewhat bigger than expected and could be as good as a 3 or 4-sigma signal because the sensitivity of BICEP2 was estimated at r = 0.06. If this is true it has immediate implications for inflationary models and quantum gravity. It would rule out quite a lot of theories while giving hope to others. For example you may hear a lot about axion monodromy inflation if this rumor is confirmed, but there will be many other ideas that could explain the result…
Another implication of such a high value for r might be that primordial gravitational waves could have a bigger impact on galaxy formation than previously envisioned. This could help explain why galaxies formed so quickly and why there is more large scale structure than expected in galaxy distribution…
The most important thing about a high signal of primordial gravitational waves for now would be that it would show that there is something there that can be measured, so more efforts and funding are likely to be turned in that direction. But first the new result (if it is what the rumors say) will be scrutinised, not least by rival astronomers from the SPT and Polarbear observatories who only managed to detect lensing B-modes. Why would BICEP2 succeed where they failed?
Infinite implications?
The inflationary theory of the Big Bang was worked out some 34 years ago to explain several paradoxes in today's universe. One was why very distant regions of space on opposite sides of the sky look similar even though they could have never have had any common causal relation to each other in the original, simple Big Bang. Another was why the matter-and-energy density in the universe is so exquisitely balanced between the amount that would cause a quick recollapse (a "Big Crunch") and a quick expansion away to practically nothing (the "Big Chill").
By stacking maps from the European Space Agency’s Planck satellite of more than 11,000 cold (blue) and 10,000 hot (red) spots in the cosmic microwave background, researchers revealed the related E-mode polarization patterns to high precision. The total range in temperature shown is just 0.8 microkelvin. Knowing the E-mode patterns is necessary for judging how much of them have been scattered to become B-modes, and how to separate these B-modes from the different ones originating from gravitational waves at the time of inflation. ESA / Planck CollaborationThe inflation theory solved these problems, and then it succeeded even more spectacularly in a new way. It proved to explain the intractable mystery of the origin of cosmic structure, or the lumpiness of matter: how today's galaxies, galaxy clusters, and the overall cosmic web could have formed out of the extremely smooth Big Bang. Today's structures turned out to be explained almost perfectly by inflation rapidly expanding to cosmic size the microscopic, random quantum fluctuations that would be present in the dense matter before the first 10–34 second.
So the inflation theory has become today's most accepted model of how the Big Bang happened.
A more recent bit of evidence was the finding by the Planck mission that a slight "tilt" (spectral index) in the size distribution of the early fluctuations, an effect that the simplest version of inflation predicts, has clearly left its imprint on the cosmic microwave background radiation, which we see from a time 380,000 years after the Big Bang.
But inflation makes wilder predictions as well.
In its basic form it predicts that our spacetime is physically infinite, and is filled everywhere with stars and galaxies just about like those we see within our own cosmic horizon (out to just 13.8 billion light-years in terms of look-back distance).
On an even grander scale, "eternal inflation," which is now more or less the default model, predicts an infinite number of other Big Bang universes, separate from ours, continuing to erupt forever in an underlying matrix of the eternally inflating stuff that, at one particular point, gave birth to ours. (The concept of this "multiverse" was dramatically visualized in last week's Episode 1 of Cosmos.) Most other Big Bang universes might have very different physical properties from ours, expressing the vast number of different physical solutions to string theory as it's presently conceived.
Notes cosmologist Max Tegmark (MIT), "Parallel universes are not a theory — they're predictions of certain theories." And one of those theories, after Monday, may look a big step closer to being testable science that experimenters can get their hands into.
Stay tuned.
-
pluiepoco (周音) 组长 楼主 2014-03-20 18:14:48
英文报道2: http://news.stanford.edu/news/2014/march/physics-cosmic-inflation-031714.html
TEXT
The 10-meter South Pole Telescope and the BICEP (Background Imaging of Cosmic Extragalactic Polarization) Telescope against the Milky Way. BICEP2 recently detected gravitational waves in the cosmic microwave background, a discovery that supports the cosmic inflation theory of how the universe began. (Photo: Keith Vanderlinde, National Science Foundation) Stanford Report, March 17, 2014 New evidence from space supports Stanford physicist's theory of how universe began The detection of gravitational waves by the BICEP2 experiment at the South Pole supports the cosmic inflation theory of how the universe came to be. The discovery, made in part by Assistant Professor Chao-Lin Kuo, supports the theoretical work of Stanford's Andrei Linde.
Video by Kurt Hickman Assistant Professor Chao-Lin Kuo, right, delivers news of the discovery to Professor Andrei Linde. Almost 14 billion years ago, the universe we inhabit burst into existence in an extraordinary event that initiated the Big Bang. In the first fleeting fraction of a second, the universe expanded exponentially, stretching far beyond the view of today's best telescopes. All this, of course, has just been theory.
Researchers from the BICEP2 collaboration today announced the first direct evidence supporting this theory, known as "cosmic inflation." Their data also represent the first images of gravitational waves, or ripples in space-time. These waves have been described as the "first tremors of the Big Bang." Finally, the data confirm a deep connection between quantum mechanics and general relativity.
"This is really exciting. We have made the first direct image of gravitational waves, or ripples in space-time across the primordial sky, and verified a theory about the creation of the whole universe," said Chao-Lin Kuo, an assistant professor of physics at Stanford and SLAC National Accelerator Laboratory, and a co-leader of the BICEP2 collaboration.
These groundbreaking results came from observations by the BICEP2 telescope of the cosmic microwave background – a faint glow left over from the Big Bang. Tiny fluctuations in this afterglow provide clues to conditions in the early universe. For example, small differences in temperature across the sky show where parts of the universe were denser, eventually condensing into galaxies and galactic clusters.
Because the cosmic microwave background is a form of light, it exhibits all the properties of light, including polarization. On Earth, sunlight is scattered by the atmosphere and becomes polarized, which is why polarized sunglasses help reduce glare. In space, the cosmic microwave background was scattered by atoms and electrons and became polarized too.
"Our team hunted for a special type of polarization called 'B-modes,' which represents a twisting or 'curl' pattern in the polarized orientations of the ancient light," said BICEP2 co-leader Jamie Bock, a professor of physics at Caltech and NASA's Jet Propulsion Laboratory (JPL).
Gravitational waves squeeze space as they travel, and this squeezing produces a distinct pattern in the cosmic microwave background. Gravitational waves have a "handedness," much like light waves, and can have left- and right-handed polarizations.
"The swirly B-mode pattern is a unique signature of gravitational waves because of their handedness," Kuo said.
The team examined spatial scales on the sky spanning about 1 to 5 degrees (two to 10 times the width of the full moon). To do this, they set up an experiment at the South Pole to take advantage of its cold, dry, stable air, which allows for crisp detection of faint cosmic light.
"The South Pole is the closest you can get to space and still be on the ground," said BICEP2 co-principal investigator John Kovac, an associate professor of astronomy and physics at Harvard-Smithsonian Center for Astrophysics, who led the deployment and science operation of the project. "It's one of the driest and clearest locations on Earth, perfect for observing the faint microwaves from the Big Bang."
The researchers were surprised to detect a B-mode polarization signal considerably stronger than many cosmologists expected. The team analyzed their data for more than three years in an effort to rule out any errors. They also considered whether dust in our galaxy could produce the observed pattern, but the data suggest this is highly unlikely.
"This has been like looking for a needle in a haystack, but instead we found a crowbar," said co-leader Clem Pryke, an associate professor of physics and astronomy at the University of Minnesota.
Physicist Alan Guth formally proposed inflationary theory in 1980, when he was a postdoctoral scholar at SLAC, as a modification of conventional Big Bang theory. Instead of the universe beginning as a rapidly expanding fireball, Guth theorized that the universe inflated extremely rapidly from a tiny piece of space and became exponentially larger in a fraction of a second. This idea immediately attracted lots of attention because it could provide a unique solution to many difficult problems of the standard Big Bang theory.
However, as Guth, who is now a professor of physics at MIT, immediately realized, certain predictions in his scenario contradicted observational data. In the early 1980s, Russian physicist Andrei Linde modified the model into a concept called "new inflation" and again to "eternal chaotic inflation," both of which generated predictions that closely matched actual observations of the sky.
Linde, now a professor of physics at Stanford, could not hide his excitement about the news. "These results are a smoking gun for inflation, because alternative theories do not predict such a signal," he said. "This is something I have been hoping to see for 30 years."
BICEP2's measurements of inflationary gravitational waves are an impressive combination of theoretical reasoning and cutting-edge technology. Stanford's contribution to the discovery extends beyond Kuo, who designed the polarization detectors. Kent Irwin, a professor of physics at Stanford and SLAC, also conducted pioneering work on superconducting sensors and readout systems used in the experiment. The research also involved several researchers, including Kuo, affiliated with the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), which is supported by Stanford, SLAC and the Kavli Foundation.
BICEP2 is the second stage of a coordinated program, the BICEP and Keck Array experiments, which has a co-principal investigator structure. The four PIs are Jamie Bock (Caltech/JPL,) John Kovac (Harvard), Chao-Lin Kuo (Stanford/SLAC) and Clem Pryke (UMN). All have worked together on the present result, along with talented teams of students and scientists. Other major collaborating institutions for BICEP2 include the University of California, San Diego; University of British Columbia; National Institute of Standards and Technology; University of Toronto; Cardiff University; and Commissariat à l'Énergie Atomique.
BICEP2 is funded by the National Science Foundation (NSF). NSF also runs the South Pole Station where BICEP2 and the other telescopes used in this work are located. The Keck Foundation also contributed major funding for the construction of the team's telescopes. NASA, JPL and the Moore Foundation generously supported the development of the ultra-sensitive detector arrays that made these measurements possible.
Technical details and journal papers can be found on the BICEP2 release website: http://bicepkeck.org
Media Contact Bjorn Carey, Stanford News Service: office: (650) 725-1944, cell: (207) 749-8698, bccarey@stanford.edu
131 11.7K 1018 46Stumble57
Share This Story 11.7K 1018 46 131
Related To This Story Video: Stanford Professor Andrei Linde celebrates physics breakthrough
-
pluiepoco (周音) 组长 楼主 2014-03-20 18:16:04
英文报道3
TEXT
Landmark Discovery: New Results Provide Direct Evidence for Cosmic Inflation by Shannon Hall on March 17, 2014
Want to stay on top of all the space news? Follow @universetoday on Twitter
The BICEP telescope located at the south pole. Image Credit: Harvard-Smithsonian Center for Astrophysics
Astronomers have announced Nobel Prize-worthy evidence of primordial gravitational waves — ripples in the fabric of spacetime — providing the first direct evidence the universe underwent a brief but stupendously accelerated expansion immediately following the big bang.
“The implications for this detection stagger the mind,” said co-leader Jamie Bock from Caltech. “We are measuring a signal that comes from the dawn of time.”
BICEP2 (Background Imaging of Cosmic Extragalactic Polarization) scans the sky from the south pole, looking for a subtle effect in the cosmic microwave background (CMB) — the radiation released 380,000 years after the Big Bang when the universe cooled enough to allow photons to travel freely across the cosmos.
The CMB fills every cubic centimeter of the observable universe with approximately 400 microwave photons. The so-called afterglow of the big bang is nearly uniform in all directions, but small residual variations (on the level of one in 100,000) in temperature show a specific pattern. These irregularities match what would be expected if minute quantum fluctuations had ballooned to the size of the observable universe today.
So astronomers dreamed up the theory of inflation — the epoch immediately following the big bang (10-34 seconds later) when the universe expanded exponentially (by at least a factor of 1025) — causing quantum fluctuations to magnify to cosmic size. Not only does inflation help explain why the universe is so smooth on such massive scales, but also why it’s flat when there’s an infinite number of other possible curvatures.
While inflation is a pillar of big bang cosmology, it has remained purely a theoretical framework. Many astronomers don’t buy it as we can’t explain what physical mechanism would have driven such a massive expansion, let alone stop it. The results announced today provide a strong case in support of inflation.
In Depth: We’ve Discovered Inflation! Now What?
The trick is in looking at the CMB where inflation’s signature is imprinted as incredibly faint patterns of polarized light — some of the light waves have a preferred plane of vibration. If a gravitational wave passes through the fabric of spacetime it will squeeze spacetime in one direction (making it hotter) and stretch it in another (making it cooler). Inflation will then amplify these quantum fluctuations into a detectable signal: the hotter and therefore more energetic photons will be visible in the CMB, leaving a slight polarization imprint.
E-modes (left side) look the same when reflected in a mirror. B-modes (right side) do not. Image Credit: Nathan Miller This effect will create two distinct patterns: E-modes and B-modes, which are differentiated based on whether or not they have even or odd parity. In simpler terms: E-mode patterns will look the same when reflected in a mirror, whereas B-mode patterns will not.
E-modes have already been extensively detected and studied. While both are the result of primordial gravitational waves, E-modes can be produced through multiple mechanisms whereas B-modes can only be produced via primordial gravitational waves. Detecting the latter is a clean diagnostic — or as astronomers are putting it: “smoking gun evidence” — of inflation, which amplified gravitational waves in the early Universe.
“The swirly B-mode pattern is a unique signature of gravitational waves because of their handedness. This is the first direct image of gravitational waves across the primordial sky,” said co-leader Chao-Lin Kuo from Stanford University, designer of the BICEP2 detector.
Remove this ad
Shown here are the actual B-mode polarization patterns provided by the BICEP2 Telescope. Image Credit: Harvard-Smithsonian Center for Astrophysics
The team analyzed sections of the sky spanning one to five degrees (two to 10 times the size of the full moon) for more than three years. They created a unique array of 512 detectors, which collectively operate at a frosty 0.25 Kelvin. This new technology enabled them to make detections at a speed 10 times faster than before.
The results are surprisingly robust, with a 5.9 sigma detection. For comparison, when particle physicists announced the discovery of the Higgs Boson in July, 2012 they had to reach at least a 5 sigma result, or a confidence level of 99.9999 percent. At this level, the chance that the result is erroneous due to random statistical fluctuations is only one in a million. Those are pretty good odds.
While the team was careful to rule out any errors, it will be crucial for another team to verify these results. The Planck spacecraft, which has been producing exquisite measurements of the CMB, will be reporting its own findings later this year. At least a dozen other teams have also been searching for this signature.
“This work offers new insights into some of our most basic questions: Why do we exist? How did the universe begin?” commented Harvard theorist Avi Loeb. “These results are not only a smoking gun for inflation, they also tell us when inflation took place and how powerful the process was.”
Not only does inflation succeed in explaining the origin of cosmic structure — how the cosmic web formed from the smooth aftermath of the big bang — but it makes wilder predictions as well. The model seems to produce not just one universe, but rather an ensemble of universes, otherwise known as a multiverse. This collection of universes has no end and no beginning, continuing to pop up eternally.
Today’s results provide a stronger case for “eternal inflation,” which gives a new perspective on our desolate place within the cosmos. Not only do we live on a small planet orbiting one star out of hundreds of billions, in one galaxy out of hundreds of billions, but our entire universe may just be one bubble out of a vast cosmic ocean of others.
The detailed paper may be found here. The full set of papers are here. An FAQ summarizing the data is here.
-
pluiepoco (周音) 组长 楼主 2014-03-20 18:20:48
具体论文下载地址:http://bicepkeck.org/b2_respap_arxiv_v1.pdf 论文集网站:http://bicepkeck.org/ FAQ:http://bicepkeck.org/faq.html
BICEP2 2014 Release Frequently Asked Questions
About the detection •Have you detected B-modes from inflation?
We have detected B-mode polarization at precisely the angular scales where the inflationary signal is expected to peak with very high significance (> 5 sigma). We have extensively studied possible contamination from instrumental effects and feel confident we can limit them to much smaller than the observed signal. Inflationary gravitational waves appear to be by far the most likely explanation for the signal we see.
•Couldn’t it just be galactic emission or polarized dust?
The data disfavor this. The best current models of polarized galactic emission in our observing region show it to be much fainter than the signal we see. Also, there is little evidence for correlation between our B-mode maps and the predicted pattern from the galaxy. Finally, within our own data, the “color” of the B-modes found by comparing different frequencies is consistent with CMB but disfavors galactic contamination.
•Have you detected a gravitational wave?
The frequency of the cosmic gravitational waves is very low, so we are not able to follow the temporal modulation. However, we are indeed directly observing a snapshot of gravitational waves through their imprints on matter and radiation over space. Ordinary density perturbations cannot create the pattern we observe. The presence of a water wave can be detected by feeling its up-and-down motion or by taking a picture of it. We are doing the latter.
About the science •What is B-mode polarization and how is it generated by inflation?
Measuring the polarization of the Cosmic Microwave Background at different points on the sky determines a direction and polarized intensity (the polarized intensity of the CMB is less than 1/1,000,000 its total brightness). This can be visualized as a map of little line segments at every spot on the sky, the patterns of which we analyze. B-mode polarization is essentially the swirly part of that pattern (known mathematically as the ‘curl’). For the density fluctuations that generate most of the polarization of the CMB this part of the primordial pattern is exactly zero.
[This is because density flows in the early universe go into or out of dense regions, and the polarization lines up with these flows in a way that doesn't swirl, producing only so-called E-mode polarization. To generate a B-mode pattern in the early universe you need gravitational waves.]
Inflation magnifies quantum fluctuations, which exist even in vacuum. The quantum fluctuations in the inflation field itself (“inflaton”) become the density fluctuations seen in the CMB and at much later times in galaxy distributions. During inflation, the quantum fluctuations in gravity (“graviton”) become long wavelength gravitational waves that produced the B-mode we see.
•Wasn’t B-mode polarization detected last year?
Yes - but a different kind. Last summer the 10-meter South Pole Telescope announced the first evidence for B-mode polarization in the CMB on arcminute scales which arises from the lensing, or bending of light, by gravitational attraction of structures formed in the relatively recent universe. Recently a second telescope, Polarbear, has also detected this effect. Our data sees this lensing effect too, but what is critical is that we see strong B-mode polarization at the much larger angular scales--2 to 4 degrees on the sky--where lensing is a tiny effect but where inflationary gravitational waves are expected to peak.
•Didn’t Planck find that r < 0.11? Do your experiments disagree?
Our measurements don’t disagree. Constraints on the gravitational-wave background level r reported from Planck and previous experiments are not from measurements of B-mode polarization. Instead, they come from the CMB temperature measurements which show surprisingly low power at the largest scales, implying little room for an additional contribution from tensors in the context of the simplest models. B-mode measurements like ours aim to directly measure the inflationary gravitational-wave pattern itself at the degree angular scales where it should peak. The tension between the high level of B-mode polarization we see and the apparent low power at large scales may be a statistical fluke, but many possible extensions to the simplest model could also relieve this apparent tension.
•Are you claiming you’ve detected running of the spectral index?
No. Running is a commonly-studied modification to the simplest Lambda Cold Dark Matter (LCDM) model in which the slope of primordial spectrum is allowed to change from large to small scales, but it is only one of the possible model extensions that could relieve tension between a high value of r and the low large-scale temperature spectrum. We only choose it as an example because it is simple and familiar from analyses by Planck and other teams. We anticipate that cosmologists will think broadly about possible parameter shifts or model extensions.
•Will your data/maps be made public?
Yes. The papers describing the results we present today are available for download on our webpage right now (and will be on arXiv tomorrow morning). The B-mode results and the information needed to do cosmological analyses with them are available for download now. The maps we’ve shown, including the high signal-to-noise images of B-mode polarization, will eventually also be released in digital form with the information needed to re-analyze and compare them to independent observations (though this will take us a while).
About the project •Why the South Pole?
Water vapor in the atmosphere absorbs microwaves, making detailed studies of the CMB impossible from most places on earth. The South Pole is near the middle of the Antarctic plateau, the driest environment on the planet. At an effective altitude of over 10,000 feet (~3000 meters), stable weather patterns and winter temperatures averaging -72F (-58C), the South Pole is the closest a ground-based telescope can get to being in space. The patch of sky we study is visible from the South Pole continuously, 24h each day for the whole year. The National Science Foundation’s US Antarctic Program, which operates the South Pole Station, provides excellent infrastructure, communications, and support for the small team needed to run our telescopes, including our winterover scientists Steffen Richter and Robert Schwarz.
•Who funds BICEP2 / this project?
BICEP2 is funded by the National Science Foundation. Like the other telescopes in our BICEP and Keck Array series of experiments, NSF has supported its construction and operation, and also runs the South Pole Station where all our telescopes observe. The Keck Foundation has also contributed major funding for construction of our telescopes. NASA, JPL, and the Moore Foundation have generously supported the development of the ultra-sensitive detector array technology which make these measurements possible.
•Who leads BICEP2?
John Kovac has led the BICEP2 experiment. Clem Pryke has led the analysis that produced today’s results. Jamie Bock contributed the optical concept for the experiment and developed the detector array technology. Chao-Lin Kuo designed the polarization sensitive detectors used in BICEP2 and is leading the next major telescope in this series, BICEP3. BICEP2 is the second stage of a coordinated program, the BICEP and Keck Array series of experiments, developed for the South Pole. This coordinated program has a co-PI structure. The four PIs of this series are John Kovac (Harvard), Clem Pryke (UMN), Jamie Bock (Caltech/JPL), and Chao-Lin Kuo (Stanford/SLAC). All have worked together on the present result, along with talented teams of students and scientists. Other major collaborating institutions for BICEP2 include UCSD, UBC, NIST, University of Toronto, Cardiff, and CEA.
•What does "BICEP2" stand for?
Officially, "BICEP2" is not an acronym. It's simply a name.
•How big is your team?
Although we have twelve collaborating institutions (see above) the core team working on this result has been relatively small for a major science project--a few dozen people. We’d like to particularly highlight the contribution of our dedicated graduate students Randol Aikin, Justus Brevik, Kirit Karkare, Jon Kaufman, Sarah Kernasovskiy, Chris Sheehy, Grant Teply, Jamie Tolan, and Chin Lin Wong. Our project postdocs have also included Colin Bischoff, Immanuel Buder, Jeff Filippini, Stefan Fliescher, Martin Lueker, Roger O’Brient, Walt Ogburn, Angiola Orlando, Zak Staniszewski, and Abigail Vieregg.
•Are there competing experiments?
Indeed yes, this is a highly competitive field. There are currently about a dozen ground-based and balloon-borne telescopes that are targeting the goal of measuring B-mode polarization. Many of them are described in this recent review. In addition, polarization data from ESA's Planck satellite are eagerly anticipated. We look forward to results from these experiments which we hope will confirm and further extend the detection we report today.
•What comes next?
In the coming months our team plans to release improved data from the Keck Array, which will further test the BICEP2 detection at 150 GHz and add improved sensitivity at 95 GHz to further constrain foregrounds. By the end of this year the Planck satellite will release its polarization results. Of course we look forward to hearing results from other experiments which can test these results, and extend the frequency and angular coverage. We expect rapid progress. On a somewhat longer timescale, a detected signal at this amplitude raises exciting possibilities for studying inflation through more precise CMB polarization measurements over the entire sky which will spur the community to develop a new generation of ground-based and space-borne experiments.
BICEP2 2014 Results Release Page
-
pluiepoco (周音) 组长 楼主 2014-03-20 18:24:18
Google翻译版
BICEP2 2014发布常见问题解答
关于检测 •你有没有从通货膨胀检测到B-模式?
我们检测B型极化正好在角鳞所在的通胀信号有望具有很高的显着性( > 5倍标准差)达到高峰。我们广泛的研究可能污染仪器的影响,并有信心,我们可以将它们限制在比观测到的信号小得多。通胀引力波似乎是迄今为止我们看到的信号最可能的解释。
•难道不是仅仅是银河系排放或极化灰尘?
数据不赞成这一点。在我们的观察区域极化星系发射的目前最好的模型显示它比我们所看到的信号非常微弱。此外,很少有证据表明我们的B模式图和从星系的预测模式之间的相关性。最后,在我们自己的数据, “色”的B模式发现通过比较不同的频率是与招商银行一致,但disfavors星系污染。
•您是否检测到引力波?
宇宙引力波的频率是很低的,所以我们不能够按照时间调制。然而,我们的确直接通过他们对物质和辐射在空间印记观察引力波的快照。普通的密度扰动不能创建我们观察到的模式。可以感觉它的向上和向下运动或利用它的照片被检测的水波的存在。我们正在做的是后者。
关于科学 •什么是B型极化,它是怎么被通货膨胀产生的?
在对天空的不同点测量宇宙微波背景的偏振确定方向和极化强度(中巴的极化强度小于1 /1,000,000的总亮度) 。这可以看作是小线段的地图上时,天空的每一个点,而我们分析的模式。 B型极化基本上是这种模式(称为数学上的“卷曲” )的旋涡状的部分。对于生成的大部分中巴极化的密度波动这部分的原始模式是完全为零。
[这是因为密度在早期宇宙流进入或离开密集的地区,和极化线与这些流量在不漩涡的方式,只生产所谓的E模式极化。为了生成你需要的引力波宇宙早期的B模式模式。 ]
通胀放大量子涨落,甚至在真空中存在。在通胀字段本身( “暴胀” )的量子涨落成为出现在中巴并在更晚的时间在星系分布的密度波动。在通货膨胀,在重力( “引力子” )的量子涨落成为该公司生产的B模式,我们看到波长长的引力波。
•是不是B型偏振检测到去年?
是的 - 但不同种类。去年夏天, 10米长的南极望远镜宣布B型极化中巴的第一个证据上的角分尺度收入来自于透镜,或光线弯曲,由形成于相对较新的宇宙结构的引力。最近第二望远镜, Polarbear ,也检测到这种效果。我们的数据看这个透镜效应太大,但什么是关键的是,我们看到强劲的B型极化在更大的角尺度 - 2至4度的天 - 其中透镜是一个微小的影响,但其中通货膨胀引力波预计高峰。
•没有普朗克发现使得r < 0.11 ?难道你不同意的实验?
我们的测量不反对。从普朗克和以前的实验报道了引力波背景R级限制是不是从B型偏振测量。相反,他们来自中巴温度测量显示其惊人的低功耗在大尺度上,这意味着小房间从张量的最简单的模型的上下文中的额外贡献。 B超测量像我们的目标是直接测量通货膨胀的引力波模式本身的度角尺度,它应该达到峰值。 B型极化,我们看到和大尺度明显低功耗的高层次之间的紧张关系可能是一个统计上的巧合,但很多可能的扩展,以最简单的模型也可以缓解这种明显的紧张。
•你是否你已经检测到的谱指数的运行?
第跑步是一种常用深入研究的修改,最简单的lambda冷暗物质( LCDM )模型,其中原始光谱的斜率允许从大变为小的尺度,但它是唯一可能的模型扩展,可以减轻之一r的高价值和低大规模的温度谱之间的紧张关系。我们只选择它作为一个例子,因为它很简单,由普朗克和其他球队的分析熟悉。我们预计,宇宙学家们广泛地去想可能的参数变化或模型扩展。
•将您的数据/图公开?
是。说明我们今天呈现结果的文件可供下载我们的网页上,现在(和将在明天的arXiv上午) 。 B模式的结果,并与他们需要做宇宙的信息分析,都可以下载了。我们所展示的地图,包括B型极化的高信号与噪声的图像,最终也将被释放以数字形式与重新分析,并比较它们的独立意见(所需的信息,虽然这需要我们一段时间) 。
关于专案 •为什么南极?
大气中的水蒸汽吸收微波,使中巴不可能从地球上大多数地方的详细研究。南极附近的南极高原,是地球上最干燥的环境中间。在超过10000英尺( 〜3000米),稳定的天气模式,冬季平均气温-72F ( - 58C )的有效高度,南极是最接近地面望远镜可以在太空之中。天空的补丁,我们研究的是从南极可见不断,24H每天全年。美国国家科学基金会的美国南极计划,经营南极站,提供优良的基础设施,通信,以及执行我们的望远镜,包括我们winterover科学家斯特芬·里希特和罗伯特·施瓦茨所需要的小团队的支持。
•谁资助BICEP2 /这个项目?
BICEP2是由美国国家科学基金会资助。像我们BICEP和凯克阵列系列实验的其他望远镜,美国国家科学基金会一直支持它的建设和运营,同时还运行在南极站,所有我们的望远镜观察。凯克基金会也有助于建设我们的望远镜的主要资金。 NASA ,JPL,和摩尔基金会慷慨支持的超灵敏检测器阵列技术,它使这些测量可能的发展。
•谁领导BICEP2 ?
约翰·科瓦奇带领BICEP2实验。克莱姆Pryke导致,产生今天的结果进行分析。杰米·博克贡献的光学概念的实验和开发的探测器阵列技术。超林廓设计BICEP2使用的偏振敏感探测器和被领导在这个系列中, BICEP3下一个主要的望远镜。 BICEP2是一个协调方案,二头肌和凯克阵列一系列实验,对南极开发的第二阶段。这种协调的方案有一个共同的PI结构。这四个督察这一系列的约翰·科瓦奇(哈佛) ,克莱姆Pryke ( UMN ) ,杰米·博克(加州理工学院/ JPL ) ,和超林廓(斯坦福大学/ SLAC) 。都对目前的结果一起,伴随着学生和科学家的人才队伍。对于BICEP2其他主要合作机构包括加州大学圣地亚哥分校,不列颠哥伦比亚大学, NIST ,加拿大多伦多大学,卡迪夫,和CEA 。
•什么是“ BICEP2 ”代表什么?
据官方统计, “ BICEP2 ”并不是首字母缩写。它只是一个名字。
•你有多大的团队?
虽然我们有12合作机构(见上文)的核心团队在做这个结果是比较小的一个重大科学工程 - 几十人。我们想特别强调我们专业的研究生兰多尔艾金,尤斯图斯布雷维克, KIRIT Karkare ,乔恩·考夫曼,莎拉Kernasovskiy ,克里斯·希伊,格兰特Teply ,杰米·托兰和林青国旺贡献。我们的项目博士后还包括科林·比肖夫,以马内利普德,杰夫·菲利皮尼,斯特凡Fliescher ,马丁Lueker ,罗杰O'Brient ,沃尔特·奥格, Angiola奥兰多,扎克Staniszewski ,和阿比盖尔Vieregg 。
•有竞争性的实验?
的确是的,这是一个高度竞争的领域。目前正在针对测量B型极化的目标大概有十几地面和球载望远镜。他们中许多人在这最近的综述中描述。此外,来自欧洲航天局的普朗克卫星极化数据热切期待。我们期待从这些实验中,我们希望将确认并进一步扩大我们今天报道的检测结果。
•下一步是什么?
在未来的几个月我们的团队计划从凯克阵列,这将进一步测试BICEP2检测在150 GHz和95 GHz的加入提高了灵敏度,以进一步约束凸显出来释放提高了数据。到今年年底,普朗克卫星将发布其偏振效果。当然,我们期待着听到来自其他实验可以测试这些结果的结果,扩展频率和角度覆盖。我们预计长足的进步。在一个稍微长的时间尺度,在这个幅度的检测信号引发,通过在整个天空,将推动社会发展新一代陆基和空基的实验更精确的中巴极化测量研究通货膨胀令人兴奋的可能性。
BICEP2 2014结果发布页撤消修改Cancel此翻译比原来的更好?是,提交翻译感谢您提交的内容。 BICEP2 2014 fābù chángjiàn wèntí jiědá
Guānyú jiǎncè •Nǐ yǒu méiyǒu cóng tōnghuò péngzhàng jiǎncè dào B-móshì?
Wǒmen jiǎncè B xíng jí huà zhènghǎo zài jiǎo lín suǒzài de tōngzhàng xìnhào yǒuwàng jùyǒu hěn gāo de xiǎnzhe xìng (> 5 bèi biāozhǔn chā) dádào gāofēng. Wǒmen guǎngfàn de yánjiū kěnéng wūrǎn yíqì de yǐngxiǎng, bìng yǒu xìnxīn, wǒmen kěyǐ jiāng tāmen xiànzhì zài bǐ guāncè dào de xìnhào xiǎo de duō. Tōngzhàng yǐnlì bō sìhū shì qìjīn wéizhǐ wǒmen kàn dào de xìnhào zuì kěnéng de jiěshì.
•Nándào bùshì jǐnjǐn shì yínhéxì páifàng huò jí huà huīchén?
Shùjù bù zànchéng zhè yīdiǎn. Zài wǒmen de guānchá qūyù jí huà xīngxì fāshè de mùqián zuì hǎo de móxíng xiǎnshì tā bǐ wǒmen suǒ kàn dào de xìnhào fēicháng wéiruò. Cǐwài, hěn shǎo yǒu zhèngjù biǎomíng wǒmen de B móshì tú hé cóng xīngxì de yùcè móshì zhī jiān de xiāngguān xìng. Zuìhòu, zài wǒmen zìjǐ de shùjù, “sè” de B móshì fǎ xiàn tōngguò bǐjiào bùtóng de pínlǜ shì yǔ zhāoshāng yínháng yīzhì, dàn disfavors xīngxì wūrǎn.
•Nín shìfǒu jiǎncè dào yǐnlì bō?
Yǔzhòu yǐnlì bō de pínlǜ shì hěn dī de, suǒyǐ wǒmen bù nénggòu ànzhào shíjiān tiáozhì. Rán'ér, wǒmen díquè zhíjiē tōngguò tāmen duì wùzhí hé fúshè zài kōngjiān yìnjì guānchá yǐnlì bō de kuàizhào. Pǔtōng de mìdù rǎodòng bùnéng chuàngjiàn wǒmen guānchá dào de móshì. Kěyǐ gǎnjué tā de xiàngshàng hé xiàng xià yùndòng huò lìyòng tā de zhàopiàn bèi jiǎncè de shuǐbō de cúnzài. Wǒmen zhèngzài zuò de shì hòu zhě.
Guānyú kēxué •Shénme shì B xíng jí huà, tā shì zěnme bèi tōnghuò péngzhàng chǎnshēng de?
Zài duì tiānkōng de bùtóng diǎn cèliáng yǔzhòu wéibō bèijǐng de piānzhèn quèdìng fāngxiàng hé jí huà qiángdù (zhōng bā de jí huà qiángdù xiǎoyú 1/1,000,000 de zǒng liàngdù). Zhè kěyǐ kàn zuò shì xiǎo xiànduàn dì dìtú shàng shí, tiānkōng de měi yīgè diǎn, ér wǒmen fēnxī de móshì. B xíng jí huà jīběn shàng shì zhè zhǒng móshì (chēng wéi shùxué shàng de “juǎnqū” ) de xuánwō zhuàng de bùfèn. Duìyú shēngchéng de dà bùfèn zhōng bā jí huà de mìdù bōdòng zhè bùfèn de yuánshǐ móshì shì wánquán wéi líng.
[Zhè shì yīnwèi mìdù zài zǎoqí yǔzhòu liú jìnrù huò líkāi mìjí dì dìqū, hé jí huà xiàn yǔ zhèxiē liúliàng zài bù xuánwō de fāngshì, zhǐ shēngchǎn suǒwèi de E móshì jí huà. Wèile shēngchéng nǐ xūyào de yǐnlì bō yǔzhòu zǎoqí de B móshì móshì. ]
Tōngzhàng fàngdà liàngzǐ zhǎng luò, shènzhì zài zhēnkōng zhōng cúnzài. Zài tōngzhàng zìduàn běnshēn ( “bào zhàng” ) de liàngzǐ zhǎng luò chéngwéi chūxiàn zài zhōng bā bìng zài gèng wǎn de shíjiān zài xīngxì fēnbù de mìdù bōdòng. Zài tōnghuò péngzhàng, zài zhònglì ( “yǐnlì zǐ” ) de liàngzǐ zhǎng luò chéngwéi gāi gōngsī shēngchǎn de B móshì, wǒmen kàn dào bōcháng zhǎng de yǐnlì bō.
•Shì bùshì B xíng piānzhèn jiǎncè dào qùnián?
Shì de - dàn bùtóng zhǒnglèi. Qùnián xiàtiān, 10 mǐ zhǎng de nánjí wàngyuǎnjìng xuānbù B xíng jí huà zhōng bā de dì yī gè zhèngjù shàng de jiǎo fēn chǐdù shōurù láizì yú tòujìng, huò guāngxiàn wānqū, yóu xíngchéng yú xiāngduì jiào xīn de yǔzhòu jiégòu de yǐnlì. Zuìjìn dì èr wàngyuǎnjìng, Polarbear, yě jiǎncè dào zhè zhǒng xiàoguǒ. Wǒmen de shùjù kàn zhège tòujìng xiàoyìng tài dà, dàn shénme shì guānjiàn de shì, wǒmen kàn dào qiángjìng de B xíng jí huà zài gèng dà de jiǎo chǐdù - 2 zhì 4 dù de tiān - qízhōng tòujìng shì yīgè wéixiǎo de yǐngxiǎng, dàn qízhōng tōnghuò péngzhàng yǐnlì bō Yùjì gāofēng.
•Méiyǒu pǔ lǎng kè fāxiàn shǐde r < 0.11? Nándào nǐ bù tóngyì de shíyàn?
Wǒmen de cèliáng bù fǎnduì. Cóng pǔ lǎng kè hé yǐqián de shíyàn bàodàole yǐnlì bō bèijǐng R jí xiànzhì shì bùshì cóng B xíng piānzhèn cèliáng. Xiāngfǎn, tāmen láizì zhōng bā wēndù cèliáng xiǎnshì qí jīngrén de dī gōng hào zài dà chǐdù shàng, zhè yìwèizhe xiǎo fángjiān cóng zhāng liàng de zuì jiǎndān de móxíng de shàngxiàwén zhōng de éwài gòngxiàn. B chāo cèliáng xiàng wǒmen de mùbiāo shì zhíjiē cèliáng tōnghuò péngzhàng de yǐnlì bō móshì běnshēn de dù jiǎo chǐdù, tā yīnggāi dádào fēngzhí. B xíng jí huà, wǒmen kàn dào hé dà chǐdù míngxiǎn dī gōng hào de gāo céngcì zhī jiān de jǐnzhāng guānxì kěnéng shì yīgè tǒngjì shàng de qiǎohé, dàn hěnduō kěnéng de kuòzhǎn, yǐ zuì jiǎndān de móxíng yě kěyǐ huǎnjiě zhè zhǒng míngxiǎn de jǐnzhāng.
•Nǐ shìfǒu nǐ yǐjīng jiǎncè dào de pǔ zhǐ shǔ de yùnxíng?
Dì pǎobù shì yī zhǒng chángyòng shēnrù yánjiū de xiūgǎi, zuì jiǎndān de lambda lěng ànwùzhí (LCDM) móxíng, qízhōng yuánshǐ guāngpǔ de xiélǜ yǔnxǔ cóng dà biàn wèi xiǎo de chǐdù, dàn tā shì wéiyī kěnéng de móxíng kuòzhǎn, kěyǐ jiǎnqīng zhī yī R de gāo jiàzhí hé dī dà guīmó de wēndù pǔ zhī jiān de jǐnzhāng guānxì. Wǒmen zhǐ xuǎnzé tā zuòwéi yīgè lìzi, yīnwèi tā hěn jiǎndān, yóu pǔ lǎng kè hé qítā qiú duì de fēnxī shúxī. Wǒmen yùjì, yǔzhòu xué jiāmen guǎngfàn de qù xiǎng kěnéng de cānshù biànhuà huò móxíng kuòzhǎn.
•Jiāng nín de shùjù/tú gōngkāi?
Shì. Shuōmíng wǒmen jīntiān chéngxiàn jiéguǒ de wénjiàn kě gōng xiàzài wǒmen de wǎngyè shàng, xiànzài (hé jiàng zài míngtiān de arXiv shàngwǔ). B móshì de jiéguǒ, bìng yǔ tāmen xūyào zuò yǔzhòu de xìnxī fēnxī, dōu kěyǐ xiàzàile. Wǒmen suǒ zhǎnshì dì dìtú, bāokuò B xíng jí huà de gāo xìnhào yǔ zàoshēng de túxiàng, zuìzhōng yě jiāng bèi shìfàng yǐ shùzì xíngshì yǔ chóngxīn fēnxī, bìng bǐjiào tāmen de dúlì yìjiàn (suǒ xū de xìnxī, suīrán zhè xūyào wǒmen Yīduàn shíjiān).
Guānyú zhuān'àn •Wèishéme nánjí?
Dàqì zhòng de shuǐ zhēngqì xīshōu wéibō, shǐ zhōng bā bù kěnéng cóng dìqiú shàng dà duōshù dìfāng de xiángxì yánjiū. Nánjí fùjìn de nánjí gāoyuán, shì dìqiú shàng zuì gānzào de huánjìng zhōngjiān. Zài chāoguò 10000 yīngchǐ ( 〜3000 mǐ), wěndìng de tiānqì móshì, dōngjì píngjūn qìwēn-72F ( - 58C) de yǒuxiào gāodù, nánjí shì zuì jiējìn dìmiàn wàngyuǎnjìng kěyǐ zài tàikōng zhī zhōng. Tiānkōng de bǔdīng, wǒmen yánjiū de shì cóng nánjí kějiàn bùduàn,24H měitiān quán nián. Měiguó guójiā kēxué jījīn huì dì měiguó nánjí jìhuà, jīngyíng nánjí zhàn, tígōng yōuliáng de jīchǔ shèshī, tōngxìn, yǐjí zhíxíng wǒmen de wàngyuǎnjìng, bāokuò wǒmen winterover kēxuéjiā sī tè fēn·lǐ xī tè hé luōbótè·shī wǎ cí suǒ xūyào de xiǎo tuánduì de zhīchí.
•Shuí zīzhù BICEP2/zhège xiàngmù?
BICEP2 shì yóu měiguó guójiā kēxué jījīn huì zīzhù. Xiàng wǒmen BICEP hé kǎi kè zhènliè xìliè shíyàn de qítā wàngyuǎnjìng, měiguó guójiā kēxué jījīn huì yīzhí zhīchí tā de jiànshè hé yùnyíng, tóngshí hái yùnxíng zài nánjí zhàn, suǒyǒu wǒmen de wàngyuǎnjìng guānchá. Kǎi kè jījīn huì yěyǒu zhù yú jiànshè wǒmen de wàngyuǎnjìng de zhǔyào zījīn. NASA,JPL, hé mó'ěr jījīn huì kāngkǎi zhīchí de chāo língmǐn jiǎncè qì zhènliè jìshù, tā shǐ zhèxiē cèliáng kěnéng de fǎ zhǎn.
•Shuí lǐngdǎo BICEP2?
Yuēhàn·kē wǎ qí dàilǐng BICEP2 shíyàn. Kè lái mǔ Pryke dǎozhì, chǎnshēng jīntiān de jiéguǒ jìn háng fēnxī. Jié mǐ·bókè gòngxiàn de guāngxué gàiniàn de shíyàn hé kāifā de tàncè qì zhènliè jìshù. Chāo lín kuò shèjì BICEP2 shǐyòng de piānzhèn mǐngǎn tàncè qì hé bèi lǐngdǎo zài zhège xìliè zhōng, BICEP3 xià yīgè zhǔyào de wàngyuǎnjìng. BICEP2 shì yīgè xiétiáo fāng'àn, èr tóu jī hé kǎi kè zhènliè yī xìliè shíyàn, duì nánjí kāifā de dì èr jiēduàn. Zhè zhǒng xiétiáo de fāng'àn yǒu yīgè gòngtóng de PI jiégòu. Zhè sì gè dūchá zhè yī xìliè de yuēhàn·kē wǎ qí (hāfó), kè lái mǔ Pryke (UMN), jié mǐ·bókè (jiāzhōu lǐgōng xuéyuàn/ JPL), hé chāo lín kuò (sītǎnfú dàxué/ SLAC). Dōu duì mùqián de jiéguǒ yīqǐ, bànsuízhe xuéshēng hé kēxuéjiā de réncái duìwu. Duìyú BICEP2 qítā zhǔyào hézuò jīgòu bāokuò jiāzhōu dàxué shèngdìyàgē fēnxiào, bùlièdiān gēlúnbǐyǎ dàxué, NIST, jiānádà duōlúnduō dàxué, kǎ dífu, hé CEA.
•Shénme shì “BICEP2” dàibiǎo shénme?
Jù guānfāng tǒngjì, “BICEP2” bìng bùshì shǒu zìmǔ suōxiě. Tā zhǐshì yīgè míngzì.
•Nǐ yǒu duōdà de tuánduì?
Suīrán wǒmen yǒu 12 hézuò jīgòu (jiàn shàng wén) de héxīn tuánduì zài zuò zhège jiéguǒ shì bǐjiào xiǎo de yīgè zhòngdà kēxué gōngchéng - jǐ shí rén. Wǒmen xiǎng tèbié qiángdiào wǒmen zhuānyè de yánjiūshēng lán duō ěr ài jīn, yóu sī tú sī bùléi wéi kè, KIRIT Karkare, qiáo ēn·kǎo fu màn, shā lā Kernasovskiy, kè lǐsī·xī yī, gélántè Teply, jié mǐ·tuō lán hé línqīngguó wàng gòngxiàn. Wǒmen de xiàngmù bóshìhòu hái bāokuò kē lín·bǐ xiào fu, yǐ mǎ nèi lì pǔ dé, jié fu·fēi lì pí ní, sī tè fán Fliescher, mǎdīng Lueker, luō jié O'Brient, wò'ērtè·ào gé, Angiola àolánduō, zhā kè Staniszewski, hé ā bǐ gài ěr Vieregg.
•Yǒu jìngzhēng xìng de shíyàn?
Díquè shì de, zhè shì yīgè gāodù jìngzhēng de lǐngyù. Mùqián zhèngzài zhēnduì cèliáng B xíng jí huà de mùbiāo dàgài yǒu shí jǐ dìmiàn hé qiú zài wàngyuǎnjìng. Tāmen zhōng xǔduō rén zài zhè zuìjìn de zòngshù zhōng miáoshù. Cǐwài, láizì ōuzhōu hángtiān jú de pǔ lǎng kè wèixīng jí huà shùjù rèqiè qídài. Wǒmen qídài cóng zhèxiē shíyàn zhōng, wǒmen xīwàng jiāng quèrèn bìng jìnyībù kuòdà wǒmen jīntiān bàodào de jiǎncè jiéguǒ.
•Xià yībù shì shénme?
Zài wèilái de jǐ gè yuè wǒmen de tuánduì jìhuà cóng kǎi kè zhènliè, zhè jiāng jìnyībù cèshì BICEP2 jiǎncè zài 150 GHz hé 95 GHz de jiārù tígāole língmǐndù, yǐ jìnyībù yuēshù tūxiǎn chūlái shìfàng tígāole shùjù. Dào jīnnián niándǐ, pǔ lǎng kè wèixīng jiāng fābù qí piānzhèn xiàoguǒ. Dāngrán, wǒmen qídàizhuó tīng dào láizì qítā shíyàn kěyǐ cèshì zhèxiē jiéguǒ de jiéguǒ, kuòzhǎn pínlǜ hé jiǎodù fùgài. Wǒmen yùjì chángzú de jìnbù. Zài yīgè shāowéi zhǎng de shíjiān chǐdù, zài zhège fúdù de jiǎncè xìnhào yǐnfā, tōngguò zài zhěnggè tiānkōng, jiāng tuīdòng shèhuì fāzhǎn xīn yīdài lù jī hé kōng jī de shíyàn gèng jīngquè de zhōng bā jí huà cèliáng yánjiū tōnghuò péngzhàng lìng rén xīngfèn de kěnéng xìng.
BICEP2 2014 jiéguǒ fābù yè Please help Google Translate improve quality for your language here. Google 翻译(企业版):译者工具包网站翻译器全球商机洞察将文件或链接拖放到此处以翻译文档或网页。 将链接拖放到此处以翻译网页。 我们不支持您拖放的文件类型,请尝试其他文件类型。 我们不支持您拖放的链接类型,请尝试其他类型的链接。 关闭即时翻译关于 Google 翻译移动隐私权政策帮助发送反馈
-
pluiepoco (周音) 组长 楼主 2014-03-20 18:25:53
Google翻译版 新闻3
具有里程碑意义的发现:新的结果提供了直接证据的宇宙膨胀 香农厅2014年3月17日
想留在所有的空间新闻顶?按照Twitter的@ universetoday
二头肌望远镜,位于南极。图片来源:哈佛 - 史密森天体物理中心
天文学家宣布原始的引力波的诺贝尔奖,值得证据 - 涟漪在时空结构 - 提供了第一个直接证据,宇宙经历了一个短暂但stupendously加速扩张紧随大爆炸之后。
“这个检测的影响错开记”,共同领导杰米·博克从加州理工学院说。 “我们测量了来自时间的曙光的信号。 ”
BICEP2 (宇宙银河系外偏振背景成像)扫描天空从南极,寻找宇宙微波背景( CMB)产生微妙的影响 - 辐射释放的宇宙大爆炸后38万年时,当宇宙冷却足以让光子去旅行自由地穿过宇宙。
中巴充满观测宇宙的每立方厘米约400微波光子。大爆炸的所谓的余辉几乎是一致的在各个方向,但小的残留变化(在一个10万的水平)温度显示一个特定的模式。这些违规行为匹配的内容可以预期,如果分量子涨落今天已经膨胀到可观测宇宙的大小。
因此天文学家想出了通货膨胀的理论 - 量子造成的波动放大到宇宙大小 - 时代马上大爆炸( 10-34秒后),当宇宙膨胀指数(以1025至少有一个因素)以下。不仅通胀有助于解释为什么宇宙是顺风顺水的如此大规模的尺度,也是为什么它的平板,当有其他可能的曲率无穷多个。
而通胀是大爆炸宇宙学的一个支柱,它仍然是一个纯粹的理论框架。许多天文学家并不买账,因为我们不能说明什么物理机制会推动这样一个庞大的扩张,更遑论将其停止。今日公布业绩提供支撑通胀的强有力的理由。
在深度:我们发现通货膨胀!现在是什么?
诀窍是在看哪里通货膨胀的签名被印为偏振光的令人难以置信的微弱模式的中巴 - 一些光波有振动的优选平面。如果一个引力波穿过时空结构它会挤压时空在一个方向上(使它更热),并拉伸它在另一个(使它冷却器) 。那么通胀将放大这些量子涨落成可检测的信号:炎热的,因此更多的高能光子将是可见的中巴,留下一个轻微的极化印记。
E-模式(左侧)看起来是一样的,当反映在镜子。 B-模式(右侧)没有。图片来源:内森·米勒 这个效果将创建两个不同的模式:E-模式和B-模式,这是基于无论它们是否具有偶数或奇数奇偶区分。简单来说:当反映在镜子E模式模式将看起来是一样的,而B型图案不会。
E-模式已经被广泛检测和研究。虽然两者都是原始的引力波的结果,E -模式可以通过多种机制产生,而B-模式只能通过原始的引力波产生。检测后者是一种清洁的诊断 - 或者天文学家们把它: “冒烟的枪证据” - 通货膨胀,这在早期宇宙放大的引力波。
“该旋涡状的B-模式模式是引力波,因为他们霸道的一个独特的签名。这是引力波穿过原始的天空第一次直接的形象, “共同领导者朝林廓斯坦福大学, BICEP2探测器的设计师说。
移除这个广告
这里显示的是由BICEP2望远镜提供的实际B型偏振模式。图片来源:哈佛 - 史密森天体物理中心
研究小组分析了天空的三年多跨越一到五度(满月的2至10倍的大小)部分。他们创造了512个探测器,它们共同在一个冷若冰霜0.25开尔文操作独特的阵列。这项新技术使他们的速度比以前快10倍进行侦测。
结果是令人惊讶的强大,具有5.9倍标准差的检测。为了便于比较,当粒子物理学家宣布希格斯玻色子的发现在2012年7月,他们必须达到至少5倍标准差的结果,或99.9999 %的置信水平。在这个层面上,有机会的结果是错误的,由于随机统计涨落只有百万分之一。这些都是相当不错的赔率。
而团队悉心地排除任何错误,这将是至关重要的另一支球队来验证这些结果。普朗克飞船,已生产的中巴精致的测量,将在今年晚些时候报告自己的发现。至少有十几种其他球队也一直在寻找这个签名。
“这项工作提供了新的见解我们的一些最基本的问题:我们为什么存在?宇宙是如何开始的? “评论哈佛理论家阿维勒布。 “这些结果是不仅是一个确凿的通货膨胀,他们还告诉我们,当通货膨胀发生,以及如何强大的过程。 ”
在解释宇宙结构的起源不仅通胀成功 - 如何从大爆炸的余波顺利形成的宇宙网 - 但它使狂放的预测也是如此。该模型似乎产生的不只是一个宇宙,而是宇宙的合奏,否则称为一个多元宇宙。宇宙的集合没有结束,没有开始,继续弹出永远。
今天的结果为“永恒的通货膨胀, ”这使我们对宇宙中荒凉的地方一个新的视角更强的情况。我们不仅生活在一个小的行星绕行一颗星出几千亿,在一个星系出几千亿,但我们的整个宇宙可能只是一场泡沫了他人的广阔宇宙的海洋。
详细的纸张可能在这里找到。 整套试卷都在这里。 一个常见问题汇总数据是在这里。
-
pluiepoco (周音) 组长 楼主 2014-03-20 18:27:21
新闻2谷歌翻译
10米的南极望远镜和二头肌(宇宙银河系外偏振背景影像)望远镜对银河系。 BICEP2最近发现在宇宙微波背景中,支持的宇宙是如何开始的宇宙膨胀理论的发现引力波。 (摄影:基思Vanderlinde,美国国家科学基金会) 斯坦福大学的报告,2014年3月17日 来自太空的新证据支持的宇宙是如何开始斯坦福大学的物理学家的理论 引力波由BICEP2实验在南极的检测支持宇宙是如何走过来的宇宙膨胀理论。这一发现,由助理教授朝林廓制作部分,支持斯坦福大学的安德烈·林德的理论工作。
视频由库尔特·希克曼 助理教授赵霖郭权,提供了发现,以安德烈·林德教授的消息。 近14十亿年前,我们所居住的宇宙形成的存在于发起大爆炸不平凡的事件。在第二首稍纵即逝分数,宇宙的膨胀指数,拉伸远远超越当今最好的望远镜的看法。所有这一切,当然,刚刚被理论。
从BICEP2合作研究人员今天宣布了第一个直接证据支持这一理论,被称为“宇宙膨胀”。他们的数据也代表了引力波的时空第一图像,或涟漪。这些波被称为“大爆炸第一震颤。”最后,数据证实量子力学和广义相对论之间的深刻联系。
“这真是令人兴奋。我们取得了引力波在穿过原始的天空时空第一直接图像,或涟漪,并验证一个理论创造整个宇宙的”超林廓,助理教授说在斯坦福大学和斯坦福直线加速器中心国家加速器实验室,以及一个共同领导BICEP2合作的物理学。
淡淡的光芒从宇宙大爆炸遗留下来的 - 这些突破性的结果由宇宙微波背景的BICEP2望远镜来自观察。在这个微小的余辉波动提供线索条件在早期宇宙中。例如,在天空中显示温度的微小差异在哪里了宇宙某些更密集,最终凝聚成星系和星系团。
因为宇宙微波背景是光的一种形式,它表现出光的所有属性,包括极化。在地球上,太阳光被散射的氛围和变成偏振光,这也是为什么偏光太阳镜有助于减少眩光。在太空中,宇宙微波背景辐射被散射原子和电子,并成为极化过。
“我们的团队猎杀两极分化的一种特殊类型,称为”B-模式“,这代表了古光的偏振方向扭转或”卷曲“的格局,”说BICEP2共同领导杰米·博克,物理学加州理工学院教授和美国宇航局喷气推进实验室(JPL)。
引力波挤压空间,因为他们的旅行,这挤压产生一个独特的模式在宇宙微波背景。引力波有“霸道”,就像光波,并且可以有左,右旋极化。
“该旋涡状的B-模式模式是因为他们的霸道的引力波的一个独特的签名,”郭说。
该小组研究的空间尺度上的天空跨越约1至5度(满月的2至10倍的宽度)。要做到这一点,他们成立了一个实验在南极利用其寒冷,干燥,稳定的空气,它允许脆检测微弱的宇宙光的优势。
“南极是最接近你可以得到空间,但仍然可以在地面上,说:”BICEP2联合首席研究员约翰·科瓦奇,天文学和物理学哈佛 - 史密森天体物理学中心副教授,谁领导的部署和科学该项目的运作。 “这是一个地球上最干燥和最清晰的位置,非常适合观测宇宙大爆炸的微弱的微波。”
研究人员惊奇地发现一个B型极化信号比许多宇宙学家预期相当强烈。研究小组分析,努力排除任何错误的数据超过三年。他们还认为灰尘在我们的银河系是否能产生所观察到的模式,但数据表明,这是极不可能的。
“这一直喜欢寻找大海捞针,而是我们发现了一个撬棍,”共同领导克莱姆Pryke,物理学和天文学在明尼苏达大学的副教授说。
物理学家艾伦·古思正式提出膨胀理论在1980年,当时他是博士后学者在SLAC,作为传统的大爆炸理论的修正。取而代之的是宇宙开始时是作为一个迅速扩大的火球,古思的理论认为,宇宙从一个微小的一块空间膨胀极为迅速,在几分之一秒变成了成倍放大。这个想法立刻吸引了大量的关注,因为它可以提供一个独特的解决方案,以标准的大爆炸理论的许多难题。
然而,正如古思,谁现在是物理学教授在麻省理工学院,立刻意识到,在他的设想中某些预测相矛盾的观测数据。 20世纪80年代初,俄国物理学家安德烈·林德修改了模型到一个名为“新通胀”的概念和两者又为“永恒的混乱通胀,”生成密切配合天空的实际观测值的预测。
林德,物理学现在在斯坦福大学的教授,无法掩饰自己兴奋的消息。 “这些结果是一个确凿的证据通胀,是因为替代理论不能预测这样一个信号,”他说。 “这是我一直希望看到30年。”
通胀引力波的BICEP2的测量是理论上的推理和尖端技术的令人印象深刻的组合。斯坦福大学的发现贡献超出了郭,是谁设计的极化检测器。肯特欧文,物理学在斯坦福大学和斯坦福直线加速器中心的教授,也进行了超导传感器和实验中所用的读出系统的开创性工作。这项研究还涉及到几个研究人员,包括郭,隶属于科维理研究所粒子天体物理和宇宙学(KIPAC),这是支持由斯坦福大学,斯坦福直线加速器中心和科维理基金会。
BICEP2是一个协调方案,二头肌和凯克阵列实验,其中有一个联合首席研究员结构的第二阶段。这四个督察是杰米·博克(加州理工学院/ JPL,)约翰·科瓦奇(哈佛),超林廓(斯坦福大学/ SLAC)和克莱姆Pryke(UMN)。都对目前的结果一起,伴随着学生和科学家的人才队伍。对于BICEP2其他主要合作机构包括加州大学,圣迭戈,英属哥伦比亚大学,国家标准与技术研究所,加拿大多伦多大学,卡迪夫大学和小卖部A L'ENERGIE Atomique。
BICEP2是由美国国家科学基金会(NSF)资助。美国国家科学基金会也运行南极站的地方BICEP2并在这项工作中所使用的其他望远镜的位置。凯克基金会还出资为球队的望远镜的建设主要资金。美国宇航局,喷气推进实验室和摩尔基金会的慷慨支持超灵敏的探测器阵列,使这些测量可能的发展。
http://bicepkeck.org:技术细节和期刊的论文可以在BICEP2发布网站上找到
媒体联络人 比约恩·凯里,斯坦福新闻服务:办公电话:(650)725-1944,手机:(207)749-8698,bccarey@stanford.edu
131 11.7K 1018 46Stumble57
分享这个故事 11.7K 1018 46 131
-
pluiepoco (周音) 组长 楼主 2014-03-20 18:28:20
新闻1 google翻译
通胀宇宙的证据予以公告今天 UPDATE 3月17日:所有的传闻都是真的。下面的故事是昨天写的,今天发布公告称,通胀的指纹已经在宇宙微波背景辐射被发现之前。阅读完整的帐户今天公布在这里。
宇宙搜索在南极。二头肌- 2望远镜是向上的碟形罩内的权利。较大的白色菜是南极望远镜( SPT ) ,建筑是黑暗部门实验室。两个实验观察频谱的毫米亚毫米波的一部分,在宇宙背景辐射的偏振映射模式。 BICEP -2项目 3月16日:谣言已经竞相通过物理和宇宙学社区为长期追求的最后几天,诺贝尔奖值得证据宇宙膨胀驱动大爆炸将在周一, 3月17日公布。预计有关该主题的新闻发布会上对“重大发现”为美国东部时间中午( 16:00 UT )在哈佛 - 史密森天体物理中心,就在不远处的天空和望远镜。我们会在那里。
什么可能会先宣布字突入广泛流通下旬周五晚上,当卫报英国发表的一篇文章在网上,引力波:有美国科学家听到了大爆炸的回声?下面是摘录:
目前宇宙学家之间的激烈猜测,美国队是确认他们已经检测到“原始引力波”的边缘 - 在宇宙140亿年前诞生的大爆炸的回声......这将改变宇宙的面貌和粒子物理学。
“如果他们这样做宣布在周一原始的引力波,我将采取大量的说服力, ” Hiranya佩里斯,来自伦敦大学学院的宇宙学家说。 “但是,如果他们有一个强大的检测...耶稣,哇!我会在下周起飞。 ”
引力波从宇宙大爆炸的发现将提供科学家的宇宙是如何诞生的第一一瞥。
该信号被传言已经被发现由一个专门的望远镜称为二头肌(宇宙银河系外偏振背景成像)在南极。它会扫描天空的微波频率,它拿起化石能源从大爆炸。
几十年来,宇宙学家认为,原始的引力波的特征可能对这种辐射被打印。 “这是被称为宇宙学的圣杯, ”佩里斯说, “这将是一个真正的大,大,大的发现....的原始引力波一直被认为是通胀的确凿证据,这是接近一个证明那理论,你会得到“ 。这是因为,宇宙学家相信,只有通胀可以放大原始的引力波成可检测的信号...
“这是真正的大打勾,我们一直在等待,它会告诉我们一些非常基本的了解发生了什么事的时候,宇宙是10-34秒的时候, ”教授安德鲁·贾菲,来自伦敦帝国学院宇宙学家说,谁的作品所涉及的被称为Polarbear搜索另一望远镜...
在去年十月的天空和望远镜,我们出版了比赛的一篇文章中的几个项目找到通胀的B-模式,以及如何微妙的信号,将形成在第一10-34第二次大爆炸。在这里,它是背景:回到宇宙大爆炸由布鲁斯·利伯曼( 2 MB pdf文件) 。这里是我们的B-模式搜索的项目列表,链接到所有的人。
而这里的引力波如何创建研究人员正试图检测偏振模式的解释:
引力波产生极化模式在宇宙微波背景( CMB)通过拉伸和挤压的空间 - 因此血浆汤原始光子和电子的 - 如通过海浪。 (一)前一波从背后击中它,空间在中间电子的横截面看起来正常。但是当波浪撞击时,横截面拉伸和挤压的一种方式,然后再在一个振荡模式(B)。而不是一个统一的汤,电子“看到”它周围的宇宙在挤压方向有点温暖,在拉伸方向(C )有点凉。原来,在垂直于光子的议案( D和E ,传入十字)所有飞机光子的波晃。当光子散射掉电子,它们被极化,摆动仅在一个平面(出线) 。所得到的图案(F)是该冷却器和温暖光子的极化的总和。但由于来自温暖地区的光子有更多的精力,他们的模式“胜出”,这意味着整体的偏振平行于温暖地区( G) 。 科技:莉娅Tiscione 话题的总结和寻找什么在公布来自菲利普·吉布斯在他的viXra日志博客:原始引力波?摘录:
如果属实,这将是一个非常大的交易确实是因为它可能是一个直接的实验钩到通货膨胀的物理甚至量子引力。这些当然是基础物理学的最充分理解和最令人兴奋的难以估计的水域...
E级和B型偏振模式有所不同。 E方式没有“霸道” - 如果你画一条线下来的图案的中心,反映的格局,没有什么变化。 B-模式看起来像螺旋和确实有“霸道” :他们改变时,镜面成像。尽管引力波可以创建两种类型,和E -模式可以通过以后的散射被改变成B-模式,原始的B-模式只能由原始的引力波进行。 S& T:利亚TiscioneMicrowave偏振可以被分解成用亥姆霍兹分解,将一个矢量场成两部分之和两种模式: E模式,其载体的卷曲是零,并且在B模式的差异是零。 E模式中中巴最早是在2002年观察到由DASI干涉仪,但它并不特别有趣。 E模式极化是由原子散射的问题,而是长期通胀期后辐射脱钩之前生成的。
去年夏天,南极望远镜( SPT )发现B-模式在中巴首次,但这些被称为是由于辐射周边大规模的星系团的引力透镜。这些可以扭转E模式极化形成的B-模式,所以他们只是稍微比E-模式本身更有趣。确实这些透镜效应的B-模式并不比一个需要被减去看到更有趣的B-模式,可能是原始的引力波的签名背景好得多...
作为一个初步的结果,我们感兴趣的是[对通胀的B-模式的力量] ,它是由被简称为r参数给定的。最新的传言说, r的值已在南极BICEP2天文台测...辟谣版本说答案为r = 0.2 。这是有点大于预期和因为BICEP2的灵敏度,估计在r = 0.06可能不如3或4 -Σ信号。如果这是真的它对于通胀的模型和量子引力直接影响。这将排除相当多的理论,而给别人带来希望。例如,你可能会听到很多关于轴子单值性通胀,如果这个传闻被证实,但会有很多其他的想法,可以解释的结果...
中对r如此高的价值的另一个含义可能是原始的引力波可能对星系形成更大的影响比以前预想。这可能有助于解释为什么星系如此迅速形成,为什么没有在星系分布较预期大尺度结构...
在有关原始引力波目前的高信号最重要的是,这将表明有那么点意思,可衡量,所以更多的努力和资金有可能在该方向被打开。但首先新的结果(如果它是什么样的传言说的)会进行审议,至少不被对手天文学家从SPT和Polarbear观测谁只设法检测透镜B-模式。为什么会BICEP2成功,他们失败了吗?
无限的影响?
宇宙大爆炸的通货膨胀理论是制定了一些34年前在今天的宇宙解释几个悖论。一个是在天空看,尽管他们可能从未有过任何共同的因果相互关系在原有的,简单的大爆炸类似的两侧的空间,为什么很遥远的地区。另一个问题是,为什么在宇宙中的物质和能量密度,这样会导致一个快速坍缩(一个“大坍缩” ),并迅速扩展到了几乎没有(在“大寒” )的金额之间的精妙平衡。
通过堆叠从超过11,000冷(蓝)欧洲航天局的普朗克卫星和10,000热(红色)在宇宙微波背景辐射斑图,研究人员揭示了相关的E模式极化模式,以较高的精度。所示的总范围在温度仅为0.8微开。了解E模式模式是必要的判断有多少人已散,成为B-模式,以及如何从不同的人在从引力波起源于通胀的时间分隔这些B模式。 欧空局/普朗克CollaborationThe通货膨胀理论解决了这些问题,然后以新的方式成功更是壮观。事实证明,来解释宇宙结构的起源之谜顽固性,或物质的团块:怎么今天的星系,星系团,以及整体宇宙网可能已经形成了非常光滑的大爆炸。今天的结构竟然是通胀迅速扩大到宇宙大小的微观,随机量子波动的影响,将存在于致密物质第一10-34第二前几乎完美的解释。
因此,通货膨胀理论已经成为当今最接受的大爆炸是如何发生的模型。
证据更近一点的是发现了普朗克的使命,一个轻微的“倾斜” (谱指数)在早期的波动,通货膨胀的最简单版本的预测效果的大小分布,显然已经留下了印记的宇宙微波背景辐射,这是我们从时间宇宙大爆炸后38万年时看到的。
但通货膨胀使得狂放的预测也是如此。
在其基本形式,它预测,我们的时空是身体无穷的,到处充满了恒星和星系只是像那些我们自己的宇宙视界内看到(出去只是13.8十亿光年的外观背的距离计算) 。
在一个更加宏伟的规模, “永恒的通货膨胀”,这是现在或多或少的默认模型,预测了其他大爆炸的宇宙,独立于我们的,持续的爆发永远的永远膨胀的东西,一个基本的矩阵无限多,在一个特定的点,生下我们的。 (这个“多元宇宙”的概念极大地可视化宇宙上周的第1集)。大多数其他大爆炸宇宙可能与我们有很大不同的物理性质,表达不同的物理解决方案的广大弦理论,因为它是目前设想。
注宇宙学家马克斯Tegmark (麻省理工学院) , “平行宇宙是不是一个理论 - 它们是某些理论的预测。 ”而这些理论之一,周一,可能看起来近了一大步,以被检验的科学的实验者可以得到他们的手放入。
敬请关注。
你的回复
回复请先 登录 , 或 注册相关内容推荐
最新讨论 ( 更多 )
- 冯圣的圣母心哪里去了 (pluiepoco)
- 川普体检报告 (pluiepoco)
- 美对华低值进口更新关税 (pluiepoco)
- 大儒为川普辨经 (pluiepoco)
- 川普高瞻远瞩 (pluiepoco)