Proc Mixed
本文为大家介绍广义线性模型Generalized linear models中的混合效应模型The Mixed Model。
先看下面这个例子:
“To evaluate the effect of treatment on serum aldosterone and plasma PRA, the linear mixed effect repeated measures models will be used to analyze the natural log-transformed AUEC (AUEC(0-24) and AUEC(0-8) separately), with treatment (including dose levels), day and treatment-by-day interaction as fixed effects, natural log-transformed AUECDay0 value as covariate and subject as a random effect. The different dose levels of PF-03882845 will be considered as different treatments in the model. The adjusted mean differences and 90% confidence intervals for the differences [AUEC(0-24)Day10 - AUEC(0-24)Day0, AUEC(0-24)Day1 - AUEC(0-24)Day0, AUEC(0-8)Day10 - AUEC(0-8)Day0, AUEC(0-8)Day1 -AUEC(0-8)Day0] will be obtained from the model and will be exponentiated to provide estimates of the ratio of adjusted geometric means [AUEC(0-24)Day10 / AUEC(0-24)Day0, AUEC(0-24)Day1 / AUEC(0-24)Day0, AUEC(0-8)Day10 / AUEC(0-8)Day0, AUEC(0-8)Day1 /AUEC(0-8)Day0] and 90% confidence intervals for the ratios for each treatment. The appropriate contrasts will be specified to compare the ratio of each PF-03882845 dose to the ratio of the placebo. The mixed effects model will be implemented using SAS Proc Mixed, with REML estimation method, variance-covariance structure of compound symmetry.”
我们通常把某个因素factor对结果变量variable的影响称为这个变量的效应effect。而这种效应分为固定效应fixed effect和随机效应random effect。
其实重复测量repeated measures数据分析就是一个混合效应模型,为什么呢?
1. 我们纳入模型的治疗组别一般是固定效应
2. 我们纳入模型的病人效应一般是随机效应
混合效应模型是由Mallinckrodt等人在2001年的一篇文章中提出的:
Mallinckrodt, C. H., Clark, W. S., David, S. R. (2001). Accounting for dropout bias using mixed-effects models. Journal of Biopharmaceutical Statistics 11:9–21.
现在已被广泛应用于重复测量数据的分析,在pfizer读到的的每个protocol里都有用到,到底它在处理重复测量数据方面有什么优势呢?
1. 混合效应模型不对compound symmetry做要求,允许每个病人测量次数不同和观测时间不同,并且解决了临床试验过程中最棘手的缺失值问题。可用于variance-covariance structure of compound symmetry(CS)或unstructured(UN)
2. 一般线性模型General linear models只能用于均数的比较,混合效应模型可用于协方差分析covariance analysis。关于协方差结构,我们通过上例中使用的SAS PROC MIXED程序来进一步介绍混合效应模型在重复测量数据中的应用。
proc mixed data=pd;
class trt subject day;
model lnAUEC =lnAUEC_bl trt day trt*day/ ddfm=KR;
repeated /subject=subject type=cs;
lsmeans trt*day/ cl alpha=0.1;
Note: baseline is defined as AUECDay0 value,因此将lnAUEC_bl作为协变量。ddfm=KR表示Kenward-Rogers degrees of freedom algorithm。CS即compound symmetric,表示测量时间点间距相同。lsmeans trt*day表示检验不同时间点治疗组间Least Squares Means的不同,LS-mean等于各个研究中心平均值加起来再除以中心数,即每个中心对治疗效应的贡献具有相同的权重。cl选项表示计算各Least Squares Means的可信区间,缺省值为95%置信区间confidence interval。
用MMRM检验不同剂量间修正均数和不同剂量间change的差异的显著性。
and will be exponentiated to provide estimates of the ratio of adjusted geometric means AUECDay10 / AUECDay0 and 90% confidence intervals for the ratios for each treatment.
Code:
estimate ‘Day10 vs. Day 0 in d1’ day -1 0 1
比较不同剂量下AUECDay10和AUECDay0在90%cl的差异的显著性。(检验完毕,转换回去,求几何均数的比值)
The appropriate contrasts will be specified to compare the ratio of each dose to the ratio of the placebo.
Code:
estimate '[Day10-Day0] in d1 vs [Day10-Day0] in PBO'
比较不同剂量下AUECDay10 - AUECDay0和placebo在90%cl的差异的显著性
/*协方差分析是将线性回归分析与方差分析结合起来的一种分析方法。利用回归关系把X值化为相等后再进行各组Y的修正均数adjust means间差别的假设检验。*/
/**AUC和AUEC的C涵义完全不同,前者指血“药”浓度,后者指血“biomarker”浓度**/
先看下面这个例子:
“To evaluate the effect of treatment on serum aldosterone and plasma PRA, the linear mixed effect repeated measures models will be used to analyze the natural log-transformed AUEC (AUEC(0-24) and AUEC(0-8) separately), with treatment (including dose levels), day and treatment-by-day interaction as fixed effects, natural log-transformed AUECDay0 value as covariate and subject as a random effect. The different dose levels of PF-03882845 will be considered as different treatments in the model. The adjusted mean differences and 90% confidence intervals for the differences [AUEC(0-24)Day10 - AUEC(0-24)Day0, AUEC(0-24)Day1 - AUEC(0-24)Day0, AUEC(0-8)Day10 - AUEC(0-8)Day0, AUEC(0-8)Day1 -AUEC(0-8)Day0] will be obtained from the model and will be exponentiated to provide estimates of the ratio of adjusted geometric means [AUEC(0-24)Day10 / AUEC(0-24)Day0, AUEC(0-24)Day1 / AUEC(0-24)Day0, AUEC(0-8)Day10 / AUEC(0-8)Day0, AUEC(0-8)Day1 /AUEC(0-8)Day0] and 90% confidence intervals for the ratios for each treatment. The appropriate contrasts will be specified to compare the ratio of each PF-03882845 dose to the ratio of the placebo. The mixed effects model will be implemented using SAS Proc Mixed, with REML estimation method, variance-covariance structure of compound symmetry.”
我们通常把某个因素factor对结果变量variable的影响称为这个变量的效应effect。而这种效应分为固定效应fixed effect和随机效应random effect。
其实重复测量repeated measures数据分析就是一个混合效应模型,为什么呢?
1. 我们纳入模型的治疗组别一般是固定效应
2. 我们纳入模型的病人效应一般是随机效应
混合效应模型是由Mallinckrodt等人在2001年的一篇文章中提出的:
Mallinckrodt, C. H., Clark, W. S., David, S. R. (2001). Accounting for dropout bias using mixed-effects models. Journal of Biopharmaceutical Statistics 11:9–21.
现在已被广泛应用于重复测量数据的分析,在pfizer读到的的每个protocol里都有用到,到底它在处理重复测量数据方面有什么优势呢?
1. 混合效应模型不对compound symmetry做要求,允许每个病人测量次数不同和观测时间不同,并且解决了临床试验过程中最棘手的缺失值问题。可用于variance-covariance structure of compound symmetry(CS)或unstructured(UN)
2. 一般线性模型General linear models只能用于均数的比较,混合效应模型可用于协方差分析covariance analysis。关于协方差结构,我们通过上例中使用的SAS PROC MIXED程序来进一步介绍混合效应模型在重复测量数据中的应用。
proc mixed data=pd;
class trt subject day;
model lnAUEC =lnAUEC_bl trt day trt*day/ ddfm=KR;
repeated /subject=subject type=cs;
lsmeans trt*day/ cl alpha=0.1;
Note: baseline is defined as AUECDay0 value,因此将lnAUEC_bl作为协变量。ddfm=KR表示Kenward-Rogers degrees of freedom algorithm。CS即compound symmetric,表示测量时间点间距相同。lsmeans trt*day表示检验不同时间点治疗组间Least Squares Means的不同,LS-mean等于各个研究中心平均值加起来再除以中心数,即每个中心对治疗效应的贡献具有相同的权重。cl选项表示计算各Least Squares Means的可信区间,缺省值为95%置信区间confidence interval。
用MMRM检验不同剂量间修正均数和不同剂量间change的差异的显著性。
and will be exponentiated to provide estimates of the ratio of adjusted geometric means AUECDay10 / AUECDay0 and 90% confidence intervals for the ratios for each treatment.
Code:
estimate ‘Day10 vs. Day 0 in d1’ day -1 0 1
比较不同剂量下AUECDay10和AUECDay0在90%cl的差异的显著性。(检验完毕,转换回去,求几何均数的比值)
The appropriate contrasts will be specified to compare the ratio of each dose to the ratio of the placebo.
Code:
estimate '[Day10-Day0] in d1 vs [Day10-Day0] in PBO'
比较不同剂量下AUECDay10 - AUECDay0和placebo在90%cl的差异的显著性
/*协方差分析是将线性回归分析与方差分析结合起来的一种分析方法。利用回归关系把X值化为相等后再进行各组Y的修正均数adjust means间差别的假设检验。*/
/**AUC和AUEC的C涵义完全不同,前者指血“药”浓度,后者指血“biomarker”浓度**/