多重共线性参考文献
检验:
方差膨胀因子( VIF)
Tolerance
Condition Number
Multicollinearity and imprecise estimation.
处理方法:
岭回归( ridge regression,) 、主成分回归( PCR) 、逐步回归、偏最小二乘法( PLS) 、倾向评分法( Propensity score)、Lasso 回归、数据分组处理( group method of data handling,GMDH)
参考文献(并不全):
Tolerance and condition in regression copmputations.
Diagnosing and dealing with multicollinearity.
Multicollinearity: a bayesian interpretation.
Principle Components Regression in Exploratory Statistical Research.
Multicollinearity in regression analysis: the problem revisited.
Collinearity and least squares regression.
Modeling data tables by principal component and PLS: class patterns and quantitative predictive relations.
The central role of the propensity score in observational studies for causal effects.
Collinearity diagnosis for a relative risk regression analysis: an application to assesment of diet cancer relationship in epidemiological studies.
Multicollinearity and imprecise estimation.
Ridge regression: biased estmiation for nonorthogonal problems.
Multicollinearity caused by specification errors.
The fallacy of differencing to reduce multicollinearity.
Propensity score methods for bias reduction in the comparison of a treatment to a nonrandomized control group.
觉得最好的办法应该是先进行自变量的选择,而不是一上来就回归。
另外这个问题似乎经济学更感兴趣,感觉医学反倒兴趣不是特别大。没有仔细研究过这个问题,隐约觉得lasso可能是最简单的。反正近来的趋势就是lasso这类方法什么都可以往上靠。
方差膨胀因子( VIF)
Tolerance
Condition Number
Multicollinearity and imprecise estimation.
处理方法:
岭回归( ridge regression,) 、主成分回归( PCR) 、逐步回归、偏最小二乘法( PLS) 、倾向评分法( Propensity score)、Lasso 回归、数据分组处理( group method of data handling,GMDH)
参考文献(并不全):
Tolerance and condition in regression copmputations.
Diagnosing and dealing with multicollinearity.
Multicollinearity: a bayesian interpretation.
Principle Components Regression in Exploratory Statistical Research.
Multicollinearity in regression analysis: the problem revisited.
Collinearity and least squares regression.
Modeling data tables by principal component and PLS: class patterns and quantitative predictive relations.
The central role of the propensity score in observational studies for causal effects.
Collinearity diagnosis for a relative risk regression analysis: an application to assesment of diet cancer relationship in epidemiological studies.
Multicollinearity and imprecise estimation.
Ridge regression: biased estmiation for nonorthogonal problems.
Multicollinearity caused by specification errors.
The fallacy of differencing to reduce multicollinearity.
Propensity score methods for bias reduction in the comparison of a treatment to a nonrandomized control group.
觉得最好的办法应该是先进行自变量的选择,而不是一上来就回归。
另外这个问题似乎经济学更感兴趣,感觉医学反倒兴趣不是特别大。没有仔细研究过这个问题,隐约觉得lasso可能是最简单的。反正近来的趋势就是lasso这类方法什么都可以往上靠。