几个不错的R package
最近因为Research的原因在用R处理一些比较大的matrix data,深深感受到了R的友善!在这里贴一点实用小技巧以及正在用的package心得,自我收藏。
1. How to load data (table) into R
Data:
100 a1 b1
200 a2 b2
300 a3 b3
400 a4 b4
Code:
> mydata = read.table("mydata.txt") # read text file
> mydata # print data frame
V1 V2 V3
1 100 a1 b1
2 200 a2 b2
3 300 a3 b3
4 400 a4 b4
2. How to load data from CSV file
Data:
Col1,Col2,Col3
100,a1,b1
200,a2,b2
300,a3,b3
Code:
> mydata = read.csv("mydata.csv") # read csv file
> mydata
Col1 Col2 Col3
1 100 a1 b1
2 200 a2 b2
3 300 a3 b3
3. Matrix Factorization
找到一个很实用的package NMF
https://cran.r-project.org/web/packages/NMF/vignettes/NMF-vignette.pdf
主要是做Bayesian Nonnegative Matrix Factorization。不太清楚能不能加上自己的Prior Distribution
4. Spike and Slab
Original paper:
https://stat.duke.edu/courses/Fall05/sta395/joelucas1.pdf
两位大牛88年就已经写出了这么厉害的method。当然R package也是一抓一大把。
Package:
https://cran.r-project.org/web/packages/spikeslab/spikeslab.pdf
另:
一个还不错的paper详细介绍了Spike and Slab的模型和应用。
http://arxiv.org/pdf/math/0505633.pdf
仍待研究
5. Gibbs Sampling
在无法用Gradient Descent的时候可以派上用场的method。只不过很难收敛(也是要看人品的)
还在学习中:
https://www.umiacs.umd.edu/~resnik/pubs/LAMP-TR-153.pdf
1. How to load data (table) into R
Data:
100 a1 b1
200 a2 b2
300 a3 b3
400 a4 b4
Code:
> mydata = read.table("mydata.txt") # read text file
> mydata # print data frame
V1 V2 V3
1 100 a1 b1
2 200 a2 b2
3 300 a3 b3
4 400 a4 b4
2. How to load data from CSV file
Data:
Col1,Col2,Col3
100,a1,b1
200,a2,b2
300,a3,b3
Code:
> mydata = read.csv("mydata.csv") # read csv file
> mydata
Col1 Col2 Col3
1 100 a1 b1
2 200 a2 b2
3 300 a3 b3
3. Matrix Factorization
找到一个很实用的package NMF
https://cran.r-project.org/web/packages/NMF/vignettes/NMF-vignette.pdf
主要是做Bayesian Nonnegative Matrix Factorization。不太清楚能不能加上自己的Prior Distribution
4. Spike and Slab
Original paper:
https://stat.duke.edu/courses/Fall05/sta395/joelucas1.pdf
两位大牛88年就已经写出了这么厉害的method。当然R package也是一抓一大把。
Package:
https://cran.r-project.org/web/packages/spikeslab/spikeslab.pdf
另:
一个还不错的paper详细介绍了Spike and Slab的模型和应用。
http://arxiv.org/pdf/math/0505633.pdf
仍待研究
5. Gibbs Sampling
在无法用Gradient Descent的时候可以派上用场的method。只不过很难收敛(也是要看人品的)
还在学习中:
https://www.umiacs.umd.edu/~resnik/pubs/LAMP-TR-153.pdf
C.R. 楞严经
(San Francisco Bay Area, United States)
茶叶收集者 文学青年 Read on Kindle 攀岩网球爱好者 Anarchists ≈ Dig...
热门话题 · · · · · · ( 去话题广场 )
-
加载中...