【申请经验-BA】商业分析MSBA硕士申请总结-最终却去了NEU CS去圆梦(2019)
2019Fall 商业分析MSBA申请总结-最终却去了NEU CS去圆梦
编辑于2019.04
个人背景
学校:双非
专业:金融经济
三维:GPA 93/100,T 105(S22),GRE 157+170+3.5
实习:2份证券行研,1份科技/影视向数据市场分析
相关课程:培养方案内的高数线代概统计量C++,额外在edx coursera上学了Python SQL
推荐信:3份校内授课老师,1份实习老板
申请结果:主申BA,抱着试试心态补申了哥大统计和NEU Align CS
AD: NEU Align CS, UMN MSBA , Georgetown MSIA, RPI MSBA, Columbia MA Stat;
REJ: UCD, UCLA, NWU, GaTech, Austin, USC, CMU MISM;
WL: UCSD MSBA;
Pending: USF MSDS, Columbia MSBA
- 专业选择
不要只在一棵树上吊死,如果以后想从事数据分析类的工作,除了BA,还可以申stat, ds, mism…
个人觉得BA是很看综合实力,看整个package,三维要达标,有丰富的实习/工作经历,拿的出手的数据分析项目经历,有一定的编程基础,同时能应对各种behavior questions
- 准备+申请
GRE:325以上够用,有能力的都考330+吧,越高越好。我是先考的GRE,后考的托福。从大三寒假就开始准备GRE,4月份第一次考,数学168没有满分,所以5月份又考了一次最后GRE是157+170+3.5,可以给的一些建议有:不要对quant掉以轻心!虽然很容易拿高分,但是稍有疏忽就没法满分,我在第二次准备GRE时,每天都刷Q,我主要做Magoosh上面的题,题量多丰富,并且针对每个知识点和每道题都有视频和文字讲解;背单词很重要,我背了很多单词书,感觉最好用的是佛脚;作文我看的是新GRE写作5.5;verbal我觉得KMF的最好用,会碰到很多原题。
TOEFL:105以上够用,有能力的请110+,越高越好。我自己考托的路太艰辛了,最主要是因为付出的时间精力不够,以至于一拖再拖一直到11月才考到105(然而口语还是22...),给出最真诚的建议就是尽量9月底之前考完GT,不然真的会很难受,申请进度也会往后推,并且不建议考很多次,一定一定要好好准备,两三次足够了,考场上出奇迹是不可能的,什么水平就是什么分,考多了会疲惫。
上课:微积分线代和概统是必备,项目还会要求同学有编程基础,最好能有实战经历,大部分BA项目都用的Python和R,如果专业没有编程课,首推在学校多选一两门编程课,C++、Java、Python、R都可以,如果没法多选课,还可以在Coursera、edX等公开课网站上面学。我的专业本身会要求学生上C++,我在大三下又在edX上面学了Python。除了上什么课,课上的projects也很重要,需要重视,不管是presentation还是paper,都会成为简历,文书,面试时的重要素材。
WES:尽量能提前确定是否需要做WES(如果没有需要的就不用做WES)(乔治城的analytics和CMU MISM是需要的),尽量刚拿到大三下成绩单就开始做WES,在北京的同学强推直接去现场办理,避开大四上的高峰期,如果学信网好几周都没有认证完,一定一定要去现场催,催真的有用。
- 实习
本人不是大佬,能力一般,再加上学校吃亏,找到相关实习还是很困难的,但要相信只要一直投一直投,就一定会找到!建议简历先找人(e.g.好心的学长学姐)修改下,实习信息我都是从公众号“今日实习”和网站应届毕业生找的;很多行业都需要数据分析,实习行业最好能有与以后全职的行业一致的,这样可以体现出来你确实有实践探索过才确认了以后的职业道路;实习中的项目是以后申请过程中的重要素材,最好能用R, Python等其他编程软件做过事情(爬虫、数据处理、数据分析(e.g. 回归)、画图...);实习还可以帮助自己确认职业规划,比如当我依次在证券公司实习两次后,我会发现自己对金融领域不太感兴趣,所以在找第三段实习的时候,我一直在找非金融向的数据分析岗位,第三段实习也让我确定下了我以后想在科技公司工作的职业规划。
- 选校
选校还是挺个性化的事情,我自己偏向课程tech(还用SAS的项目直接不考虑,课程偏金融or经济的不考虑),高就业率(比如umn, usf, emory…),地理位置好(一切加州尤其是在三番的项目 ucd, usf),带capstone project,项目信息主要从项目官网和论坛获得,QS上面有专门针对BA项目的排名,还有个公众号ChaseDream大数据上的BA/DS项目介绍,大家也可以当作参考。如果毕业后打算直接回国,建议按照综合排名选学校(比如duke, jhu),如果毕业后打算先在美国找工作,还是建议综合项目课程、就业结果、在读分享和地理位置等综合考虑。要保证每个学校都满足自己的需求,在选择保底校的时候要保证自己即使最后只能去保底校也会去。就我个人而言,我不太在意综排,更在意项目的课程,地理位置和就业情况。因为自己以后想去科技公司工作,再加上偏爱加州,申了很多加州学校(UCLA、USF、UCD、UCSD、USC,NEU-SV),不得不说加州项目非常抢手,UCD和USF一定要早申早申早申;从就业和课程选择了UMN、Emory、GaTech,W&M,CMU,Austin,Columbia;对保底校就一个要求,课程要tech,因此选择了Georgetown和RPI。如果不心疼多交占坑费,超级建议尽早申请,能早申就早申,不然可能就没坑位了(血的教训USF)。
NEU Align CS这个项目我是二月才看到的,专门给非CS背景同学准备的CS项目,时间2.5-3.5年,期间包括了一个4-8个月的带薪实习,在波士顿、西雅图和硅谷都有校区。看了往届就读反馈感觉很不错,虽然授课一般,但是大家刷题氛围好,来这个项目都是以找工作为主,大家都找到了不错实习和全职。
- 面试
楼主是面试渣+口语渣,经历了几次面试积攒了一些心得,接到面试后先上论坛整理面经,大部分都是行为面,如果不知道该如何作答(我一开始都无从下手orz)可以直接把问题复制粘贴到网上搜,有很多相关指导,Youtube上也有相关视频;我习惯是把要说的先打在电脑上,再对着电脑相机练习,把时间掌控好,讲清楚即可;几乎每个项目面试都会问why school,我的思路是从课程安排和就业情况说,课程要具体到某课程的名字,就业也是越具体越好,可以谈就业率,公司名字。
- 中介
楼主非大佬,许多能力都比较差,所以找了中介。我觉得对我来说是有用的,省了不少时间,给我的简历文书和面试都加了很多分,主要帮助包括:写RL,mentor帮忙修改简历,构建文书框架,修改文书,native speakers对简历和每篇文书的语言润色,模拟面试,开网申填网申(自己肯定要检查),遇到问题能够随时咨询中介并及时得到解答。
什么样的同学需要找中介?非大佬,身边没有可以像中介一样能提供上述帮助的学长学姐朋友老师。如果你自己本身能力(英语、面试、写作)就很强,或者你身边有大佬帮你,我觉得是不需要找中介的。
- - 一些后悔的地方(碎碎念)
后悔只申请了BA一个方向,其实还可以申很多统计项目。
不自量力申了一些肯定被拒的项目(UCLA、NWU、USC、Columbia msba,Austin),现在想想UCLA200刀申请费还超级心疼。有申这些项目的时间还不如去看看统计项目呢…
最最最后悔之没有之一:硅谷神校USF DS申晚了,一定一定要赶round 1,位置就是先到先得
口语差,面试不好,Kira最终也没准备好,没有做到每个面经问题都过一遍
--- 最后去向
在umn和neu之间纠结,最终决定去实现CS梦啦。回顾看看感觉还挺荒唐的,申了很多BA,花了很多时间精力搞文书面试,最终去了抱着试一下心态的NEU hhh
Credit to LYNN_G
蟹老板背景:布朗大学计算机系2010届校友,自2009年起创办留学咨询工作室,累计top 30全程服务案例100人以上
主申方向:CS/DS/BA/MIS/美国本科TOP 50学校
申请服务:签合约保证录取,6万元/12所学校(5月1日前签约5万),自2019年起每年限10人
语音付费咨询:700元/小时(半小时400),可指导:选校定位、DIY申请、文书构思、面试模拟、背景提升、职业规划、编程学习等
预约服务请加小助理微信:895718791(注明:留学申请;不提供免费咨询)
DS/BA/CS/MIS精华文章整理:http://www.bossqiao.com/