#311
刚开始写日记,是2020年10月21日,那时也立了个连写100天日记的flag。很少写日记的我,刚开始有点不习惯,过了几天,变得很期待每一天的写作了,虽然大多是无病呻吟,但终究是表达,是治愈。
现在也立了个连写100天flag,出于什么原因我居然忘了,翻了一下,立flag的缘由,居然是因为写到第300篇日记,然后就立个flag庆祝一下。原因不重要,重要的是这次写日记,从#300写到#311了,内心没有丝毫的期待。
所以,对人对事不再有期待了吗?
TGIF!
♡ ♡ ♡ ♡ ♡ ♡♡ ♡ ♡ ♡ ♡ ♡
写点玄学。
在所有的星宿关系中安坏是最吸引人,最接近纯爱的,只要缘分未尽,即使分开再久,都能一下子回到最初的模样。
那么,什么代表安坏关系缘分已尽(或者说,债还清了)?
1)安放下了执念,只觉得无债一身轻。安心里清楚,自己不会永远陪在坏身边,只能陪坏走这一段路。而现在,就是到了要分别的时候。
2)安可能还记得爱着坏时的感觉,但是看到坏已经无感了。坏找安,安嘴上还是会回应,对坏客客气气,但大多只是出于礼貌或者敷衍。在安坏关系里,客气代表着疏离。
3)当坏遇到困难,安也还会提供帮助,只是不会把再把对方的事当做自己的事,而是像旁观者一样,给出客观理性的建议。
4)也有安,会对坏直接不回应,和以前的刻意忽略不同,就是一种懒得理。不管坏说什么做什么,安都不再在意,情绪稳定,没有波澜起伏。
1)坏走出剧情,直面真相。不再对两个人的未来抱有期待,接受了安不属于自己的事实,也接受了和安走不到最后。
2) 虽然安可能还会时不时找回来,坏偶尔还会想起安梦到安,但是安的一举一动无法再让坏产生情绪波动。
3) 坏放下了对安的偏见,对安不再有怨怼,不再以最大的恶意揣测安,不再刻意回避安的消息,以平常心对待安。
4) 同时坏也与自己和解了,与执念和解了。曾经种种,爱恨情仇,一切成空,是非对错,都不重要,不再计较。坏接纳了自己,也重塑了自我。
描述很多,究其本质,只有一样:心平气和。但是,这个“心平气和”并不是坐在家里或者是想起对方心平气和,而是,两人分开一段时间后,一方找到另一方,另一方可以把对方当作一个遥远的梦或者是路过的人一样,心,平,气,和,安不再怜,坏不再作。
♡ ♡ ♡ ♡ ♡ ♡♡ ♡ ♡ ♡ ♡ ♡
再写点玄学。
二十岁还是二十一岁时,我跟爸妈一起住,有天跟弟弟吵架,那时他中学,书读的很差,忘了是爸妈让我,还是我自己主动去教他,忘了什么原因了,那天夜里我教他时发火了,扇了他一巴掌,骂了他,然后我爸妈我奶奶都来了,忘记为啥都来了,这些都不重要,因为我要讲的是后面发生的事。我愤愤地出门了,一个人走到镇上的迪厅,在里面蹦了好几个小时,喝了六瓶还是一扎罐装啤酒,后来有个人跟我搭讪,我嫌烦,出来了,叫了一辆三蹦子,回到家,大概是十二点多一点,喝多了,倒头就睡。
我那时的工作是上一天,休一天,中午到中午那种,但是晚上可以休息。第二天在家一起来就觉得不对劲,整个人晕乎乎的,但是并没有任何发烧、感冒症状。就这样,晕乎乎地上班,睡觉,上班,睡觉,因为跟弟弟吵架,就没回家,那几天一直住在宿舍里。每天都很晕,听人说话,看四周景物,都觉得好像梦里似的,脚踩在地上,都是飘的。
直到有一天,突然想到,这是阴历七月,马上就去了城隍庙,晕乎乎地上香跪拜后,回到宿舍接着睡觉。醒来后,整个世界是清明的,脚踩的地是实的了。
鬼皆众生,身在三界五行之中,鬼邪也是一种能量场。那时我特别容易生气,一生气特别难以控制,再在农历七月夜间出门,就特别容易撞上。
”阳气者,若天与日,失其所,则折寿而不彰。故天运当以日光明。是故阳因而上,卫外者也。“
人身的阳气,就像天上的太阳一样重要,假如阳气失去了正常的位次而不能发挥其重要作用,人就会寿命减损,生命机能亦暗弱不足。
提升阳气的做法:1)晒太阳 2)少生气 3)通三焦 4)做冥想 5)跟正能量的人在一起
现在,我跟弟弟只有在生日时给对方发红包,过年时互相给对方的孩子发个红包。回头一看,当时自己又蠢又坏,教人读书就教人读书,打骂人虽然是出于好意,但是完全没有意义,伤人伤己。
好多事情,回头一看,全是我执。
♡ ♡ ♡ ♡ ♡ ♡♡ ♡ ♡ ♡ ♡ ♡
写点神经科学。
早上被普及了一下神经递质。说生病了不去上学,让我写邮件请假,然后一边吃早餐一边跟我讲神经递质。我一边把手机递过去请他自己写请假邮件,然后一边吃早餐一边听他讲神经递质。吃完了,他回房间了。吃完了,我洗刷刷了半天去上班了。
对了,早上有进步。他一口不吃西兰花我没有怼他,他一夜没有关灯不知道几点睡的觉我没有说他,他说今天生病了不去上课我忍住了没有说你是昨晚玩游戏通宵了今天不想去上课吧,毕竟我没有抓现行,只是客厅和房间的灯一夜没关不足为凭,毕竟人说自己生病了,我非要说你装病这也不合适,再说学费还不是我付的,我只是生了他养了他今天做了早餐叫他起床凭什么我可以管他是否装病不上学。
说回神经科学。
他用英文讲的,我听了个半懂,因为好学,所以找到克利夫兰诊所的网站学习了下。
Neurotransmitters are your body’s chemical messengers. 类似于hermes 信使,中文翻译成神经递质,真的就很神经。
They carry messages from one nerve cell across a space to the next nerve, muscle or gland cell. 从一个神经元细胞到另一个神经元细胞/肌肉细胞/腺细胞。后面这个很重要,叫target,中文应该是受体。是的,攻受的受。同一种神经递质,作用于不同的受体,作用是不同的。
These messages help you move your limbs, feel sensations, keep your heart beating, and take in and respond to all information your body receives from other internal parts of your body and your environment. 注意,这里说的是messages,而不是messengers。神经递质传递的信息具有的作用:身体活动、情绪波动、心脏跳动,等等。这些信号(类似于微信信息)是化学信号。
Nerve cells are generally made up of three parts:
A cell body. (下图左边)
An axon. The axon carries the electrical signals along the nerve cell to the axon terminal. 中文翻译是轴突,哎,轴突是带电的
An axon terminal. This is where the electrical message is changed to a chemical signal using neurotransmitters to communicate with the next group of nerve cells, muscle cells or organs.中文翻译是轴突末梢,神经递质就在这儿,被储存在突触囊泡里(下面右边的圆圈圈,画的太少了,里面有成百上千个神经递质)!并在这儿将电信号转化为化学信号!

As a message or signal travels along a nerve cell, the electrical charge of the signal causes the vesicles of neurotransmitters to fuse with the nerve cell membrane at the very edge of the cell. The neurotransmitters, which now carry the message, are then released from the axon terminal into a fluid-filled space that’s between one nerve cell and the next target cell (another nerve cell, muscle cell or gland). 右上图中间那个半个圆圈表示细胞壁被融化,然后神经递质跑了出来,进入了一个液体空间(极其小,被称为突触交汇处),进来干什么,看下文
In this space, called the synaptic junction, the neurotransmitters carry the message across less than 40 nanometers (nm) wide (by comparison, the width of a human hair is about 75,000 nm). Each type of neurotransmitter lands on and binds to a specific receptor on the target cell (like a key that can only fit and work in its partner lock). After binding, the neurotransmitter then triggers a change or action in the target cell, like an electrical signal in another nerve cell, a muscle contraction or the release of hormones from a cell in a gland. 神经递质找到它的受体,然后开锁(或是打开开关),根据受体细胞不同,神经元之间就是触发电信号,肌肉细胞就是触发收缩,腺体细胞则是触发荷尔蒙分泌。
啊,我先下班给小熊做晚餐。
What action or change do neurotransmitters transmit to the target cell?
Neurotransmitters transmit one of three possible actions in their messages, depending on the specific neurotransmitter.
Excitatory. Excitatory neurotransmitters “excite” the neuron and cause it to “fire off the message,” meaning, the message continues to be passed along to the next cell. Examples of excitatory neurotransmitters include glutamate, epinephrine and norepinephrine.
Inhibitory. Inhibitory neurotransmitters block or prevent the chemical message from being passed along any farther. Gamma-aminobutyric acid (GABA), glycine and serotonin are examples of inhibitory neurotransmitters.
Modulatory. Modulatory neurotransmitters influence the effects of other chemical messengers. They “tweak” or adjust how cells communicate at the synapse. They also affect a larger number of neurons at the same time.
What happens to neurotransmitters after they deliver their message?
After neurotransmitters deliver their message, the molecules must be cleared from the synaptic cleft (the space between the nerve cell and the next target cell). They do this in one of three ways.
Neurotransmitters:
Fade away (a process called diffusion).
Are reabsorbed and reused by the nerve cell that released it (a process called reuptake).
Are broken down by enzymes within the synapse so it can’t be recognized or bind to the receptor cell (a process called degradation).
- How many different types of neurotransmitters are there?
- Scientists know of at least 100 neurotransmitters and suspect there are many others that have yet to be discovered. They can be grouped into types based on their chemical nature. Some of the better-known categories and neurotransmitter examples and their functions include the following:
- Amino acids neurotransmitters
These neurotransmitters are involved in most functions of your nervous system.
Glutamate. This is the most common excitatory neurotransmitter of your nervous system. It’s the most abundant neurotransmitter in your brain. It plays a key role in cognitive functions like thinking, learning and memory. Imbalances in glutamate levels are associated with Alzheimer’s disease, dementia, Parkinson’s disease and seizures.
Gamma-aminobutryic acid (GABA). GABA is the most common inhibitory neurotransmitter of your nervous system, particularly in your brain. It regulates brain activity to prevent problems in the areas of anxiety, irritability, concentration, sleep, seizures and depression.
Glycine. Glycine is the most common inhibitory neurotransmitter in your spinal cord. Glycine is involved in controlling hearing processing, pain transmission and metabolism.
Monoamines neurotransmitters
- These neurotransmitters play a lot of different roles in your nervous system and especially in your brain. Monoamines neurotransmitters regulate consciousness, cognition, attention and emotion. Many disorders of your nervous system involve abnormalities of monoamine neurotransmitters, and many drugs that people commonly take affect these neurotransmitters.
Serotonin. Serotonin is an inhibitory neurotransmitter. Serotonin helps regulate mood, sleep patterns, sexuality, anxiety, appetite and pain. Diseases associated with serotonin imbalance include seasonal affective disorder, anxiety, depression, fibromyalgia and chronic pain. Medications that regulate serotonin and treat these disorders include selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs).
Histamine. Histamine regulates body functions including wakefulness, feeding behavior and motivation. Histamine plays a role in asthma, bronchospasm, mucosal edema and multiple sclerosis.
Dopamine. Dopamine plays a role in your body’s reward system, which includes feeling pleasure, achieving heightened arousal and learning. Dopamine also helps with focus, concentration, memory, sleep, mood and motivation. Diseases associated with dysfunctions of the dopamine system include Parkinson’s disease, schizophrenia, bipolar disease, restless legs syndrome and attention deficit hyperactivity disorder (ADHD). Many highly addictive drugs (cocaine, methamphetamines, amphetamines) act directly on the dopamine system.
Epinephrine. Epinephrine (also called adrenaline) and norepinephrine (see below) are responsible for your body’s so-called “fight-or-flight response” to fear and stress. These neurotransmitters stimulate your body’s response by increasing your heart rate, breathing, blood pressure, blood sugar and blood flow to your muscles, as well as heighten attention and focus to allow you to act or react to different stressors. Too much epinephrine can lead to high blood pressure, diabetes, heart disease and other health problems. As a drug, epinephrine is used to treat anaphylaxis, asthma attacks, cardiac arrest and severe infections.
Norepinephrine. Norepinephrine (also called noradrenaline) increases blood pressure and heart rate. It’s most widely known for its effects on alertness, arousal, decision-making, attention and focus. Many medications (stimulants and depression medications) aim to increase norepinephrine levels to improve focus or concentration to treat ADHD or to modulate norepinephrine to improve depression symptoms.
Peptide neurotransmitters
Peptides are polymers or chains of amino acids.
Endorphins. Endorphins are your body’s natural pain reliever. They play a role in our perception of pain. Release of endorphins reduces pain, as well as causes “feel good” feelings. Low levels of endorphins may play a role in fibromyalgia and some types of headaches.
Acetylcholine
This excitatory neurotransmitter does a number of functions in your central nervous system (CNS [brain and spinal cord]) and in your peripheral nervous system (nerves that branch from the CNS). Acetylcholine is released by most neurons in your autonomic nervous system regulating heart rate, blood pressure and gut motility. Acetylcholine plays a role in muscle contractions, memory, motivation, sexual desire, sleep and learning. Imbalances in acetylcholine levels are linked with health issues, including Alzheimer’s disease, seizures and muscle spasms.
