我不是要教你偏微分方程
我来蹭偏微分方程的热点啦!
火锅和热传导方程
经常吃火锅的各位都知道,把一片薄薄的牛肉片丢到沸腾的汤底里,十几秒就能熟透。但如果是个丸子,可能就得煮上一会儿,容易被忘在锅里,等想起来的时候,已经被其他人捞走了。下次不要和捞你丸子的人一起吃火锅了。
不过,理想状况下,肉片肉丸鱼丸韭菜等火锅材料下锅后温度的变化和时间的关系很容易被最简单的热传导方程描述。所以,熟悉方程的人其实是可以准确算出每一种材料从下锅到煮熟的时间,确保自己丢下去的丸子不被朋友抢走的。算得快的话,还可以捞出三分熟七分熟的丸子。
作为一种非常典型的偏微分方程,热传导方程固然值得自己的篇幅,但我们先回到更大的领域:偏微分方程。
利益相关,我先说一下,我自己本科开始最喜欢的科目就是偏微分方程,研究生二年级开始专攻偏微分方程中的一个大分类双曲方程,博士研究的是双曲方程中比较典型的欧拉方程在扭曲的时空(比如史瓦西时空)中的解,博士后又做了偏微分方程中另一个大分类椭圆方程的研究。
当然,请你们就把这篇文章当杂文看,我不会写任何一个公式,只是试图说明,偏微分方程是一个很有意思的学科,并不只有枯燥的数学计算。男孩女孩,小猫小狗,都可能学得好哦。
偏微分方程是什么?
偏微分方程,简称PDE,不是PDD也不是PDF,简单来说就是一种方程,但这个方程中的未知量不是一个数,而是一个未知函数,等式两边都可能含有这个未知函数和它的偏导数。比如刚才说到的丸子,方程就含有了丸子的温度对时间和三维空间的偏导数。
偏导数又是什么呢?
先来说导数。导数,又叫微商——不是那个朋友圈的微商!——可以理解成函数的变化率。距离对时间的导数是速度,速度对时间的导数是加速度。这个概念的发明者现在认定是牛顿,但其实更早的17世纪,一些法国数学家就已经在用类似的计算了。
回到偏导数,这个“偏”字,是相对于“全”。描述自然现象的很多函数,通常都依赖不止一个变量:比如丸子的温度,和时间和三维空间都是有关系的:十分钟前的丸子和现在的丸子不一定会是同一个温度;丸子的中心和外部不一定会是同一个温度。对其中一个变量求导数,就叫做偏导数。
这里还有个“阶”的概念:导一次是一阶,导两次是二阶。热传导方程中,对时间的导数是一阶,对空间的导数是二阶。
简单复习一下:偏微分方程,就是一个含有未知函数和它的偏导数的方程。
偏微分方程有不同的分类系统。一般最简单的分类就是看它是几阶的。一个方程里,对于未知函数最高导过多少次就是几阶方程。丸子热传导方程是二阶方程。无粘性Burgers方程是一阶方程。(这是一个描述冲击波的方程,和汉堡没有什么关系。但我把它做例子就是因为我想吃汉堡)。
二阶线性方程一般可以分椭圆方程,抛物线方程,双曲方程等。这个三个分类的方程虽然写出来相差一两个项而已,但都自成学科,主要的研究方法和解的性质都大相径庭。拉普拉斯方程是最经典的二阶椭圆方程之一,描述电场、引力场等的性质。热传导方程是抛物方程。而流体力学里的很多现象可以用双曲方程描述。
双曲方程的肯定不会觉得自己和椭圆方程的是同行。把偏微分方程比做国家,他俩就是广东人和福建人的区别,互相都听不懂对方在说什么。
适定性和数值解
研究偏微分方程的人,大多研究这三件事:它有解吗?——不是任何一个偏微分方程都有解的。如果有解,它唯一吗?如果解存在且唯一,它稳定吗?也就是说,如果我把初始值扰动一点点,最后的解也只会变化一点点吗?如果牛肉丸一开始40度,8分钟的时候90度;牛肉丸一开始50度,8分钟的时候10000度,这个解就是不稳定的。不要吃不稳定的牛肉丸哦,会爆炸!我们把这三件事合起来叫做适定性。
有时候,一个偏微分方程的解不存在,我们把条件降下来一点,可能就存在了:比如刚才提到的描述冲击波,描述它的函数是不连续的——比如波的速度在空间的某一点发生了跳跃——那么这个时候,对它求导是没有意义的:都断开了,变化率的概念还怎么会存在(这个计算把零放在分母了)!但为了继续研究冲击波,我们会引进弱解的概念,在一个更弱的函数空间里,用更广义的方式去解决这个方程,人为地创造一个可以继续研究这种解的环境。
当然,即便有很多数学工具,偏微分方程的解通常是是很找到的。即便能证明解是存在的,具体长什么样,通常情况下不能写出来。
比如把一瓶可乐丢到黑洞外附近,你能写出一个被黑洞的质量拉扯过的可乐活动情况的偏微分方程,你也确实能够证明在初始条件给定的情况下,这个方程是有唯一解的——也就是说,可乐只要不跑到黑洞里去,它的运动情况在任何时刻都是可以确定的;但是,很遗憾,嘿嘿,具体怎么样,方程知道,老天知道,你不知道,你写不出来。嘿嘿。
广义相对论的核心爱因斯坦方程,解了这么多年,还没找到几个解。上文提过的史瓦西时空,就是爱因斯坦方程的其中一个解。这个解既可以描述黑洞外的时空,也可以描述一个静止不旋转、不带电荷的黑洞(我们称史瓦西黑洞)。——这个以后再说。有兴趣的同学可以吃完火锅后去解一解爱因斯坦方程,顺便把诺贝尔奖搬回家。
解不出来怎么办呢?
很多数学家退而求其次,开始寻求数值解。虽然,在学术鄙视链上,搞理论的看不起搞数值的,但数值解本身是一个很大的学科,数值研究者值得一样的尊敬。
数值解是什么呢?我们知道,函数依赖一些变量,这些变量是连续的。而数值解给出的,就是这些连续变量尽可能细分的时候,在这些间断的点上的值。比如,我不知道一个函数具体是怎么样的,但我知道在空间里许许多多点上每一点它的值:我知道肉丸在第1秒的温度,第1.0001秒的温度,第1.0002秒的温度……那么1.0000001秒呢?嘿嘿不知道。不要觉得这没什么用,很多情况下,我们感知不到太小的时间和距离间隔,这在日常生活中,就够了。
一些教材推荐
一般的本科数学系并不会很早开始教授偏微分方程。毕竟,要想真正看懂公式,需要比较好的微积分基础。另外,上面说到的弱解,数值解这些,需要更多包括泛函分析,数值分析等等的理论支持。
自学不容易;但是,自学是可以的。
入门可以看一本比较薄的教材:《数学物理方程》,谷超豪,李大潜等著。这本书是我大学用的教材,很容易看进去。
再要往里钻,可以看Evans的《Partial Differential Equations》,讲得比较详细,基本的方程都涵盖到了,甚至讲到了数值解。
另外,对双曲方程感兴趣的话,可以看Peter Lax的小册子《Hyperbolic systems of conservation laws》。
噗,这篇真的有人会看吗?看完的朋友里抽一位,你追到我家来,我请你吃火锅。
PS:今晚我做出了很棒的丸子!又圆又弹简直可以完美求解温度!但我不需要求,因为只有我一个人吃饭,没人和我抢。
-
Sheryl1270 赞了这篇日记 2025-02-15 10:27:25
-
嘻嘻不嘻嘻 赞了这篇日记 2025-02-07 13:31:37
-
忧郁草草 赞了这篇日记 2024-10-27 02:17:55
-
𝙏𝙨𝙪𝙠𝙞 赞了这篇日记 2024-10-10 03:19:08
-
桃浪九🌈 赞了这篇日记 2024-08-14 03:18:24
-
MARCHOY 赞了这篇日记 2024-07-28 14:13:56
-
漫漫长路 赞了这篇日记 2024-07-18 21:53:30
-
村里的陌生人 赞了这篇日记 2024-07-14 14:55:04
-
ice 赞了这篇日记 2024-07-02 15:54:45
-
豆友185049973 赞了这篇日记 2024-07-02 14:13:24
-
宥子 赞了这篇日记 2024-06-27 00:06:06
-
红豆包 赞了这篇日记 2024-06-26 21:34:47
-
远方 赞了这篇日记 2024-06-25 09:52:00
-
momo 赞了这篇日记 2024-06-24 04:59:57
-
张多萸🍀 赞了这篇日记 2024-06-23 21:09:41
-
星歪歪 赞了这篇日记 2024-06-23 19:13:49
-
C 赞了这篇日记 2024-06-23 17:22:55
-
去哪休息 赞了这篇日记 2024-06-23 15:41:04
-
然后我们跳了舞 赞了这篇日记 2024-06-22 18:54:11
-
好运安持 赞了这篇日记 2024-06-22 17:55:59
-
易陇 赞了这篇日记 2024-06-22 09:42:08
-
杀手阿蛙 赞了这篇日记 2024-06-22 03:07:39
-
懒加菲 赞了这篇日记 2024-06-22 00:35:55
-
milieu 赞了这篇日记 2024-06-21 23:35:27
-
萧太昧 赞了这篇日记 2024-06-21 18:01:24
-
哔巴生力 赞了这篇日记 2024-06-21 03:28:32
-
张aiping 赞了这篇日记 2024-06-20 18:05:43
-
小超人 赞了这篇日记 2024-06-20 14:53:08
-
烛叶 赞了这篇日记 2024-06-20 05:41:20
-
Stultus 赞了这篇日记 2024-06-20 02:31:21
-
一碗碎冰 赞了这篇日记 2024-06-20 01:25:04
-
Vegeta 赞了这篇日记 2024-06-20 00:35:06
-
奥数随风 赞了这篇日记 2024-06-19 23:48:08
-
imp 赞了这篇日记 2024-06-19 23:48:05
-
以理服人 赞了这篇日记 2024-06-19 22:57:49
-
zy 赞了这篇日记 2024-06-19 22:25:02
-
不会起名号… 赞了这篇日记 2024-06-19 19:21:43
-
阿忒 赞了这篇日记 2024-06-19 19:00:07
-
啊零 赞了这篇日记 2024-06-19 12:42:13
-
明天的乔安娜 赞了这篇日记 2024-06-19 11:52:57
-
江湖鹅驴穿鹅绒 赞了这篇日记 2024-06-19 11:39:17
-
莲藕排骨汤 赞了这篇日记 2024-06-19 09:25:34
-
大约凌晨三点半 赞了这篇日记 2024-06-19 09:20:04
-
ジェラトーニ 赞了这篇日记 2024-06-19 06:39:40
-
南天一苇 赞了这篇日记 2024-06-19 04:16:48
-
话不糙理糙 赞了这篇日记 2024-06-19 00:46:38
-
咖啡好喝耶 赞了这篇日记 2024-06-18 23:43:33
-
MightySea沫沫 赞了这篇日记 2024-06-18 22:18:29
-
poisonoo 赞了这篇日记 2024-06-18 20:10:55
-
没有非平凡理想 赞了这篇日记 2024-06-18 19:58:09
-
记一忘二三 赞了这篇日记 2024-06-18 19:31:04
-
爱探险的朵小拉 赞了这篇日记 2024-06-18 19:29:56
-
🪸 赞了这篇日记 2024-06-18 19:29:43
-
姜饼 赞了这篇日记 2024-06-18 19:23:28
-
创世之神PKD 赞了这篇日记 2024-06-18 19:16:53
-
林是天上的云 赞了这篇日记 2024-06-18 19:14:05
-
Airy❤安 赞了这篇日记 2024-06-18 19:10:53
-
Aaron 赞了这篇日记 2024-06-18 19:06:27
-
缘木 赞了这篇日记 2024-06-18 18:29:43
-
啾 赞了这篇日记 2024-06-18 17:21:41
-
Requiem 赞了这篇日记 2024-06-18 16:49:34
-
已卸载#踪影# 赞了这篇日记 2024-06-18 16:48:13
-
アキラキラ 赞了这篇日记 2024-06-18 16:22:28
-
简章 纸短情长 赞了这篇日记 2024-06-18 15:50:32
-
秉愚 赞了这篇日记 2024-06-18 15:48:51
-
来檬 赞了这篇日记 2024-06-18 15:26:11
-
missing 赞了这篇日记 2024-06-18 15:21:25
-
非著名物理学渣 赞了这篇日记 2024-06-18 15:20:15
-
怦然心动无解 赞了这篇日记 2024-06-18 15:03:31
-
蓝白 赞了这篇日记 2024-06-18 14:58:36
-
李濯青 赞了这篇日记 2024-06-18 14:58:15
-
Minimumin 赞了这篇日记 2024-06-18 14:41:25
-
北方姑娘 赞了这篇日记 2024-06-18 14:32:06
-
神奈川冲浪里子 赞了这篇日记 2024-06-18 14:17:24
-
给我一个任意门 赞了这篇日记 2024-06-18 14:16:05
-
致电你的绿头鸭 赞了这篇日记 2024-06-18 14:13:38
-
鹿逍遥 赞了这篇日记 2024-06-18 14:09:19
-
ju123 赞了这篇日记 2024-06-18 13:54:53
-
freddie 赞了这篇日记 2024-06-18 13:51:02
-
好公民库尔蕾丝 赞了这篇日记 2024-06-18 13:48:36
-
万里西风 赞了这篇日记 2024-06-18 13:45:44
-
momo 赞了这篇日记 2024-06-18 13:44:13
-
夸克又出差了吗 赞了这篇日记 2024-06-18 13:37:56
-
不辞为卿 赞了这篇日记 2024-06-18 13:37:45
-
不考德福了 赞了这篇日记 2024-06-18 13:31:32
-
Witness 赞了这篇日记 2024-06-18 13:29:02
-
mango_lili 赞了这篇日记 2024-06-18 13:27:54
-
夜晚的潜水艇 赞了这篇日记 2024-06-18 13:22:10
-
bvdcxsfjbcfy 赞了这篇日记 2024-06-18 13:04:05
-
逃逸尾巴尖 赞了这篇日记 2024-06-18 12:59:52
-
无间鸟 赞了这篇日记 2024-06-18 12:58:35
-
夏天 赞了这篇日记 2024-06-18 12:55:13
-
宏愿 赞了这篇日记 2024-06-18 12:52:26
-
titi 赞了这篇日记 2024-06-18 12:49:34
-
俶尔远逝 赞了这篇日记 2024-06-18 12:49:21
-
kakaka 赞了这篇日记 2024-06-18 12:46:56
-
momo 赞了这篇日记 2024-06-18 12:44:01
-
Monica 赞了这篇日记 2024-06-18 12:41:14
-
青未了 赞了这篇日记 2024-06-18 12:33:16
-
本因 赞了这篇日记 2024-06-18 12:28:56
Charlotte的最新日记 · · · · · · ( 全部 )
- 回家吃顿春天饭 (156人喜欢)
- AI,数学家和三体问题 (49人喜欢)
- 穿衣摆烂 (97人喜欢)
- 数学,语言,大语言模型 (452人喜欢)
- 写作这件大事 (160人喜欢)
热门话题 · · · · · · ( 去话题广场 )
-
加载中...